論文の概要: Graph Contrastive Learning for Connectome Classification
- arxiv url: http://arxiv.org/abs/2502.05109v1
- Date: Fri, 07 Feb 2025 17:30:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:55:57.530257
- Title: Graph Contrastive Learning for Connectome Classification
- Title(参考訳): コネクトーム分類のためのグラフコントラスト学習
- Authors: Martín Schmidt, Sara Silva, Federico Larroca, Gonzalo Mateos, Pablo Musé,
- Abstract要約: グラフ信号処理は、脳の機能と構造の間の相互作用を明らかにする重要なツールである。
我々の研究は、教師付きコントラスト学習手法を探求することによって、この方向へのさらなる一歩を表している。
ヒューマン・コネクトーム・プロジェクト(Human Connectome Project)データを用いた性別分類タスクにおいて,最先端のパフォーマンスを実現するフレームワークを提案する。
- 参考スコア(独自算出の注目度): 7.444875183336163
- License:
- Abstract: With recent advancements in non-invasive techniques for measuring brain activity, such as magnetic resonance imaging (MRI), the study of structural and functional brain networks through graph signal processing (GSP) has gained notable prominence. GSP stands as a key tool in unraveling the interplay between the brain's function and structure, enabling the analysis of graphs defined by the connections between regions of interest -- referred to as connectomes in this context. Our work represents a further step in this direction by exploring supervised contrastive learning methods within the realm of graph representation learning. The main objective of this approach is to generate subject-level (i.e., graph-level) vector representations that bring together subjects sharing the same label while separating those with different labels. These connectome embeddings are derived from a graph neural network Encoder-Decoder architecture, which jointly considers structural and functional connectivity. By leveraging data augmentation techniques, the proposed framework achieves state-of-the-art performance in a gender classification task using Human Connectome Project data. More broadly, our connectome-centric methodological advances support the promising prospect of using GSP to discover more about brain function, with potential impact to understanding heterogeneity in the neurodegeneration for precision medicine and diagnosis.
- Abstract(参考訳): 磁気共鳴画像(MRI)などの非侵襲的脳活動測定技術の進歩により、グラフ信号処理(GSP)による構造的および機能的脳ネットワークの研究が注目されている。
GSPは、脳の機能と構造の間の相互作用を解き明かす鍵となるツールであり、この文脈でコネクトームと呼ばれる関心領域間の接続によって定義されるグラフの分析を可能にする。
本研究は,グラフ表現学習の領域において,教師付きコントラスト学習手法を探求することによって,この方向へのさらなるステップを示す。
このアプローチの主な目的は、異なるラベルを分離しながら同じラベルを共有する被写体(グラフレベル)ベクトル表現を生成することである。
これらのコネクトームの埋め込みは、構造的および機能的接続性を考慮したグラフニューラルネットワークEncoder-Decoderアーキテクチャから導かれる。
提案フレームワークは,データ拡張技術を活用することにより,Human Connectome Projectデータを用いたジェンダー分類タスクにおいて,最先端のパフォーマンスを実現する。
より広範に、我々のコネクトーム中心の方法論の進歩は、GSPを用いて脳機能に関するさらなる発見を期待できる可能性を支持する。
関連論文リスト
- BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
本稿では,脳ネットワークにおける複数の活性化経路を学習するための新しいフレームワークであるBrainMAPを紹介する。
本フレームワークは,タスクに関わる重要な脳領域の説明的分析を可能にする。
論文 参考訳(メタデータ) (2024-12-23T09:13:35Z) - Visual Neural Decoding via Improved Visual-EEG Semantic Consistency [3.4061238650474657]
EEG機能をCLIP埋め込みスペースに直接マッピングするメソッドは、マッピングバイアスを導入し、セマンティックな矛盾を引き起こす可能性がある。
最適アライメントを容易にするために,これらの2つのモードのセマンティックな特徴を明示的に抽出する Visual-EEG Semantic Decouple Framework を提案する。
提案手法は,ゼロショットニューラルデコードタスクの最先端化を実現する。
論文 参考訳(メタデータ) (2024-08-13T10:16:10Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのマイニングにおいて大きな優位性を示している。
脳障害解析のための脳グラフ表現を学習するGNNが最近注目を集めている。
本稿では,GNNを利用した脳グラフ学習の成果をレビューすることで,このギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T02:47:39Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
人間が他人の行動を理解して認識する方法は、複雑な神経科学の問題である。
LA-GCNは、大規模言語モデル(LLM)知識アシストを用いたグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-21T08:29:16Z) - Graph Neural Operators for Classification of Spatial Transcriptomics
Data [1.408706290287121]
マウス脳組織サンプルにおける脳領域の予測に対する神経オペレーターの適用の有効性を検証するために,様々なグラフニューラルネットワークアプローチを取り入れた研究を提案する。
グラフニューラルネットワークのアプローチでは,F1スコアが72%近く向上し,すべてのベースラインやグラフネットワークのアプローチを上回った。
論文 参考訳(メタデータ) (2023-02-01T18:32:06Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Learning to Model the Relationship Between Brain Structural and
Functional Connectomes [16.096428756895918]
脳目的接続(SC)と機能接続(FC)の関係をモデル化するグラフ表現学習フレームワークを開発した。
トレーニング可能なグラフ畳み込みエンコーダは、実際の神経通信を模倣する脳の領域間の相互作用をキャプチャする。
実験では、学習した表現が、被験者の脳ネットワークの本質的な特性から貴重な情報を取得することを示した。
論文 参考訳(メタデータ) (2021-12-18T11:23:55Z) - Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling [0.0]
本稿では,動的適応時間グラフ畳み込み(DASTGCN)モデルを提案する。
提案手法により,レイヤワイドグラフ構造学習モジュールによる脳領域間の動的接続のエンドツーエンド推論が可能となる。
我々は,安静時機能スキャンを用いて,英国ビオバンクのパイプラインを年齢・性別分類タスクとして評価した。
論文 参考訳(メタデータ) (2021-09-26T07:19:47Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
本稿では,脳コネクトームの動的グラフ表現を時間的注意とともに学習するSTAGINを提案する。
HCP-RestとHCP-Taskデータセットの実験は,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2021-05-27T23:06:50Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。