論文の概要: Self-supervised Conformal Prediction for Uncertainty Quantification in Imaging Problems
- arxiv url: http://arxiv.org/abs/2502.05127v1
- Date: Fri, 07 Feb 2025 18:00:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:55:46.101820
- Title: Self-supervised Conformal Prediction for Uncertainty Quantification in Imaging Problems
- Title(参考訳): 画像問題における不確かさの自己教師付き等角予測
- Authors: Jasper M. Everink, Bernardin Tamo Amougou, Marcelo Pereyra,
- Abstract要約: ほとんどの画像復元問題は不調か不調である。
既存の画像復元手法の多くは、不確実性を定量化できないか、あるいは非常に不正確な推定を提供するかのいずれかである。
本稿では,SteinのUnbiased Risk Estimatorを利用した自己監督型コンフォメーション予測手法を提案する。
- 参考スコア(独自算出の注目度): 0.18434042562191813
- License:
- Abstract: Most image restoration problems are ill-conditioned or ill-posed and hence involve significant uncertainty. Quantifying this uncertainty is crucial for reliably interpreting experimental results, particularly when reconstructed images inform critical decisions and science. However, most existing image restoration methods either fail to quantify uncertainty or provide estimates that are highly inaccurate. Conformal prediction has recently emerged as a flexible framework to equip any estimator with uncertainty quantification capabilities that, by construction, have nearly exact marginal coverage. To achieve this, conformal prediction relies on abundant ground truth data for calibration. However, in image restoration problems, reliable ground truth data is often expensive or not possible to acquire. Also, reliance on ground truth data can introduce large biases in situations of distribution shift between calibration and deployment. This paper seeks to develop a more robust approach to conformal prediction for image restoration problems by proposing a self-supervised conformal prediction method that leverages Stein's Unbiased Risk Estimator (SURE) to self-calibrate itself directly from the observed noisy measurements, bypassing the need for ground truth. The method is suitable for any linear imaging inverse problem that is ill-conditioned, and it is especially powerful when used with modern self-supervised image restoration techniques that can also be trained directly from measurement data. The proposed approach is demonstrated through numerical experiments on image denoising and deblurring, where it delivers results that are remarkably accurate and comparable to those obtained by supervised conformal prediction with ground truth data.
- Abstract(参考訳): ほとんどの画像復元問題は、条件が不適切または不適切であるため、重大な不確実性を伴う。
この不確実性の定量化は、特に再構成された画像が重要な決定と科学を知らせる場合、実験結果を確実に解釈するために重要である。
しかし、既存の画像復元手法のほとんどは、不確実性を定量化できないか、あるいは非常に不正確な推定を提供するかのいずれかである。
コンフォーマル予測は、建設によってほぼ正確な限界カバレッジを持つ不確実な定量化能力を持つ推定器を装備するためのフレキシブルなフレームワークとして最近登場した。
これを実現するために、共形予測はキャリブレーションのための豊富な地上真実データに依存する。
しかし, 画像復元問題では, 信頼できる真理データが高額で取得できない場合が多い。
また,キャリブレーションとデプロイメントの分散シフトの状況において,地上の真理データに依存することが大きなバイアスをもたらす可能性がある。
本稿では,Stein's Unbiased Risk Estimator (SURE) を利用した自己監督型コンフォメーション予測手法を提案することにより,画像復元問題に対するコンフォメーション予測のより堅牢な手法を提案する。
この手法は、不条件の線形画像逆問題に適しており、計測データから直接トレーニングできる近代的な自己教師付き画像復元技術を使用する場合、特に強力である。
提案手法は画像のデノゲーションとデブロワーリングに関する数値実験により実証され, 精度が極めて高く, 地上の真理データによる共形予測に匹敵する結果が得られた。
関連論文リスト
- Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
コンフォーマル予測は、モデルに依存しない、分布のない不確実性定量化を提供する。
しかし、敵が訓練データと校正データを操作した場合の毒殺攻撃では、共形予測は信頼性が低い。
信頼性予測セット (RPS): 汚染下での信頼性保証を証明可能な共形予測セットを構築するための最初の効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-13T15:37:11Z) - Improving Predictor Reliability with Selective Recalibration [15.319277333431318]
リカレーションは、事前訓練されたモデルで信頼性の高い信頼度を推定する最も効果的な方法の1つである。
そこで我々は,選択モデルがユーザの選択比率を下げることを学ぶテキスト選択的リカレーションを提案する。
以上の結果から,選択的再校正は幅広い選択基準と再校正基準よりも,キャリブレーション誤差が著しく低いことが示唆された。
論文 参考訳(メタデータ) (2024-10-07T18:17:31Z) - Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation [12.625383613718636]
本稿では,雑音測定に基づいて,凸型ニューラルネットワークに基づく画像正規化項をトレーニングするために,最大限界推定を用いた教師なし手法を提案する。
実験により,提案手法は,様々な画像汚職操作者を対象とした類似の教師付きトレーニング手法と比較して,ほぼ競合する先行手法を生成することを示した。
論文 参考訳(メタデータ) (2024-04-08T12:27:00Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
多くの信頼度推定法は誤分類誤りを検出するのに有害である。
本稿では, 最先端の故障予測性能を示す平坦な最小値を求めることにより, 信頼性ギャップを拡大することを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:44:14Z) - Instant Uncertainty Calibration of NeRFs Using a Meta-calibrator [60.47106421809998]
我々は,1つの前方パスを持つNeRFに対して不確実な校正を行うメタ校正器の概念を導入する。
メタキャリブレータは、見えないシーンを一般化し、NeRFの良好な校正と最先端の不確実性を実現できることを示す。
論文 参考訳(メタデータ) (2023-12-04T21:29:31Z) - On the Quantification of Image Reconstruction Uncertainty without
Training Data [5.057039869893053]
本稿では,深部生成モデルを用いて近似後部分布を学習する深部変分フレームワークを提案する。
フローベースモデルを用いてターゲット後部をパラメータ化し,KL(Kullback-Leibler)の発散を最小限に抑え,正確な不確実性推定を実現する。
提案手法は信頼性と高品質な画像再構成を実現し,信頼性の高い不確実性を推定する。
論文 参考訳(メタデータ) (2023-11-16T07:46:47Z) - Equivariant Bootstrapping for Uncertainty Quantification in Imaging
Inverse Problems [0.24475591916185502]
パラメトリックブートストラップアルゴリズムの等価な定式化に基づく新しい不確実性定量化手法を提案する。
提案手法は汎用的であり,任意の画像再構成手法で容易に適用可能である。
提案手法を数値実験および代替不確実性定量化戦略との比較により実証する。
論文 参考訳(メタデータ) (2023-10-18T09:43:15Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UALは、データ不確実性とモデル不確実性を同時に考慮し、信頼性に配慮した予測を提供することを目的としている。
データ不確実性はサンプル固有のノイズを捕捉する」一方、モデル不確実性はサンプルの予測に対するモデルの信頼を表現している。
論文 参考訳(メタデータ) (2022-10-24T17:53:20Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
高度確率密度対応ネットワーク(PDC-Net+)は、精度の高い高密度対応を推定できる。
我々は、堅牢で一般化可能な不確実性予測に適したアーキテクチャと強化されたトレーニング戦略を開発する。
提案手法は,複数の挑戦的幾何マッチングと光学的フローデータセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-28T17:56:41Z) - Learning Accurate Dense Correspondences and When to Trust Them [161.76275845530964]
2つの画像に関連する密度の高い流れ場と、堅牢な画素方向の信頼度マップの推定を目指しています。
フロー予測とその不確実性を共同で学習するフレキシブルな確率的アプローチを開発する。
本手法は,幾何学的マッチングと光フローデータセットに挑戦する最新の結果を得る。
論文 参考訳(メタデータ) (2021-01-05T18:54:11Z) - Improving model calibration with accuracy versus uncertainty
optimization [17.056768055368384]
適切に校正されたモデルは、その予測が確実であるときに正確であり、不正確な場合に高い不確実性を示すべきである。
精度と不確実性の関係を不確実性校正のアンカーとして活用する最適化手法を提案する。
平均場変動推定によるアプローチの実証と最先端手法との比較を行った。
論文 参考訳(メタデータ) (2020-12-14T20:19:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。