論文の概要: A Lightweight Method to Disrupt Memorized Sequences in LLM
- arxiv url: http://arxiv.org/abs/2502.05159v1
- Date: Fri, 07 Feb 2025 18:41:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 18:29:33.277954
- Title: A Lightweight Method to Disrupt Memorized Sequences in LLM
- Title(参考訳): LLMにおける記憶配列を乱す軽量化法
- Authors: Parjanya Prajakta Prashant, Kaustubh Ponkshe, Babak Salimi,
- Abstract要約: 大規模言語モデル(LLM)は、多くのタスクにまたがって印象的な機能を示すが、著作権のあるコンテンツを冗長に再生するリスクがある。
TokenSwapは、文法関連トークンの確率を小さな補助モデルに置き換える軽量でポストホックなアプローチである。
提案手法は,ダウンストリームタスクにほとんど影響を与えず,最大10倍の暗記発生率を効果的に低減する。
- 参考スコア(独自算出の注目度): 7.144800814025392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) demonstrate impressive capabilities across many tasks yet risk reproducing copyrighted content verbatim, raising legal and ethical concerns. Although methods like differential privacy or neuron editing can reduce memorization, they typically require costly retraining or direct access to model weights and may degrade performance. To address these challenges, we propose TokenSwap, a lightweight, post-hoc approach that replaces the probabilities of grammar-related tokens with those from a small auxiliary model (e.g., DistilGPT-2). We run extensive experiments on commercial grade models such as Pythia-6.9b and LLaMA-3-8b and demonstrate that our method effectively reduces well-known cases of memorized generation by upto 10x with little to no impact on downstream tasks. Our approach offers a uniquely accessible and effective solution to users of real-world systems.
- Abstract(参考訳): 大規模言語モデル(LLM)は、著作権のあるコンテンツを冗長に再生し、法的および倫理的懸念を提起するリスクを冒すことなく、多くのタスクにまたがる印象的な能力を示す。
差分プライバシーやニューロン編集のような手法は記憶を減少させるが、一般的にはコストのかかるトレーニングやモデルの重みへの直接アクセスを必要とし、性能を低下させる可能性がある。
これらの課題に対処するために、TokenSwapを提案する。TokenSwapは、文法関連トークンの確率を小さな補助モデル(例えばDistilGPT-2)に置き換える軽量でポストホックなアプローチである。
我々は,Pythia-6.9b や LLaMA-3-8b などの商用グレードモデルに対する広範な実験を行い,この手法がダウンストリームタスクにほとんど影響を与えずに,記憶生成の有名なケースを最大10倍に効果的に削減できることを実証した。
私たちのアプローチは、現実世界のシステムのユーザに対して、ユニークにアクセス可能で効果的なソリューションを提供します。
関連論文リスト
- Forgetting: A New Mechanism Towards Better Large Language Model Fine-tuning [53.398270878295754]
Supervised Fine-tuning (SFT) は、事前訓練された大規模言語モデル (LLM) において重要な役割を果たす。
各コーパス内のトークンを、モデルパフォーマンスを改善するのに有用かどうかに基づいて、正と負の2つの部分に分類することを提案する。
我々は、よく確立されたベンチマークで実験を行い、この忘れるメカニズムが全体のモデル性能を向上するだけでなく、より多様なモデル応答を促進することを発見した。
論文 参考訳(メタデータ) (2025-08-06T11:22:23Z) - UniErase: Unlearning Token as a Universal Erasure Primitive for Language Models [54.75551043657238]
学習可能なパラメトリック接尾辞(アンラーニングトークン)を用いて、ターゲットとなる忘れ行動に向けて言語モデルを操る新しいアンラーニングパラダイムであるUniEraseを紹介する。
UniEraseは、実世界の知識設定の下で、バッチ、シーケンシャル、そして正確なアンラーニングで、最先端のSOTA(State-of-the-art)パフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-05-21T15:53:28Z) - Tokens for Learning, Tokens for Unlearning: Mitigating Membership Inference Attacks in Large Language Models via Dual-Purpose Training [13.680205342714412]
大規模言語モデル(LLM)は、現代の自然言語処理のバックボーンとなっているが、センシティブなトレーニングデータの漏洩に関するプライバシー上の懸念を生じさせている。
本稿では,トークン固有の特徴を活用して,言語モデルのトレーニングデータを保護するための,軽量かつ効果的な経験的プライバシ保護手法である methodname を提案する。
論文 参考訳(メタデータ) (2025-02-27T03:37:45Z) - Aggressive Post-Training Compression on Extremely Large Language Models [32.589344168888914]
モデルのサイズを減らすためには、攻撃的な後トレーニングモデル圧縮が必要である。
本稿では,0.7領域以上で8ビット未満の量子化を実現する新しいネットワーク切断技術を提案する。
論文 参考訳(メタデータ) (2024-09-30T08:47:17Z) - MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts [29.593170782882563]
大きな言語モデル(LLM)は機密情報を記憶し、潜在的な誤用に対する懸念を引き起こす。
以前のプラクティスでは、実用性、効率性、堅牢性という3つの大きな課題に直面しています。
勾配降下に基づくアンラーニング手法であるMEOWを提案する。
論文 参考訳(メタデータ) (2024-09-18T09:55:48Z) - Towards Robust and Parameter-Efficient Knowledge Unlearning for LLMs [25.91643745340183]
大規模言語モデル(LLM)は、大量のテキストコーパスの事前学習を通じて、強い推論と記憶能力を示す。
これはプライバシーと著作権侵害のリスクを生じさせ、効率的な機械学習手法の必要性を強調している。
LLMの堅牢かつ効率的なアンラーニングを可能にする新しいフレームワークであるLoKUを提案する。
論文 参考訳(メタデータ) (2024-08-13T04:18:32Z) - MoExtend: Tuning New Experts for Modality and Task Extension [61.29100693866109]
MoExtendは、Mixture-of-Experts (MoE)モデルのモダリティ適応と拡張を効率化する効果的なフレームワークである。
MoExtendは、新しいエキスパートをトレーニング済みのMoEモデルにシームレスに統合し、トレーニング済みのモデルをチューニングすることなく、新しい知識を提供する。
論文 参考訳(メタデータ) (2024-08-07T02:28:37Z) - Can Reinforcement Learning Unlock the Hidden Dangers in Aligned Large Language Models? [3.258629327038072]
大規模言語モデル(LLM)は、自然言語処理における印象的な機能を示している。
しかし、これらのモデルによって有害なコンテンツを生成する可能性は持続しているようだ。
本稿では,LLMをジェイルブレイクし,敵の引き金を通したアライメントを逆転させる概念について検討する。
論文 参考訳(メタデータ) (2024-08-05T17:27:29Z) - Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
本稿では,出力確率と事前学習データ頻度の相関を計測する,記憶化,分布記憶化という拡張概念を導入する。
本研究は, より単純で知識集約的なタスクにおいて, 記憶がより大きな役割を担い, 一般化が, より困難で推論に基づくタスクの鍵であることを示す。
論文 参考訳(メタデータ) (2024-07-20T21:24:40Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - Advancing the Robustness of Large Language Models through Self-Denoised Smoothing [50.54276872204319]
大規模言語モデル(LLM)は大きな成功を収めたが、敵の摂動に対する脆弱性は大きな懸念を引き起こしている。
本稿では,LLMのマルチタスク特性を活用して,まずノイズの入力を識別し,次にこれらの復号化バージョンに基づいて予測を行う。
LLMのロバスト性を高めるために個別のモデルを訓練する必要がある従来のコンピュータビジョンのスムース化技術とは異なり、本手法は効率と柔軟性を著しく向上させる。
論文 参考訳(メタデータ) (2024-04-18T15:47:00Z) - FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping [49.66872823080736]
自己回帰型大規模言語モデル(LLaMa, GPT)は、言語理解と生成において顕著な成功を収めている。
発生時に発生する過負荷を軽減するため、いくつかの早期退避および層下降戦略が提案されている。
本稿では,入力適応型フィードフォワードスキップ戦略であるFFN-SkipLLMを提案する。
論文 参考訳(メタデータ) (2024-04-05T02:35:43Z) - UNDIAL: Self-Distillation with Adjusted Logits for Robust Unlearning in Large Language Models [12.45822383965784]
本稿では,UnDIAL(Unlearning via Self-Distillation on Adjusted Logits)を紹介する。
本手法では, 自己蒸留を利用してロジットを調整し, ターゲットトークンの影響を選択的に低減する。
論文 参考訳(メタデータ) (2024-02-15T16:21:14Z) - Self-Debiasing Large Language Models: Zero-Shot Recognition and
Reduction of Stereotypes [73.12947922129261]
ステレオタイピングを減らすために,大規模言語モデルのゼロショット機能を活用している。
自己嫌悪は、9つの異なる社会集団におけるステレオタイピングの度合いを著しく低下させることが示される。
この研究が、バイアス軽減のための他のゼロショット技術に関する調査をオープンにすることを願っている。
論文 参考訳(メタデータ) (2024-02-03T01:40:11Z) - The Ups and Downs of Large Language Model Inference with Vocabulary Trimming by Language Heuristics [74.99898531299148]
本研究は,興味のある言語への埋め込みエントリを制限し,時間と記憶効率を高めることによる語彙トリミング(VT)について検討する。
Unicodeベースのスクリプトフィルタリングとコーパスベースの選択という2つの言語を異なる言語ファミリやサイズに適用する。
その結果、VTは小型モデルのメモリ使用量を50%近く削減し、生成速度が25%向上した。
論文 参考訳(メタデータ) (2023-11-16T09:35:50Z) - SoK: Memorization in General-Purpose Large Language Models [25.448127387943053]
大規模言語モデル(LLM)は、無数のアプリケーションが開発中で、目覚ましいペースで進んでいる。
LLMはトレーニングデータの短い秘密を記憶できるだけでなく、さまざまな方法でテキストで表現できる事実や書体スタイルといった概念を記憶することもできる。
本稿では,文章,事実,アイデア,アルゴリズム,書式,分布特性,アライメント目標を網羅したLLMにおける記憶のための分類法を提案する。
論文 参考訳(メタデータ) (2023-10-24T14:25:53Z) - The first step is the hardest: Pitfalls of Representing and Tokenizing
Temporal Data for Large Language Models [10.414206635385632]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な一般化を実証している。
ウェアラブルや電子健康記録から得られたデータなど、数値データや時間データをこれらのモデルに入力する際に、顕著な障害が発生する。
モバイルヘルスセンシングなどの人間中心のタスクにLLMを用いた最近の研究について論じるとともに、一般的なLLMが時間データを誤ってトークン化していることを示すケーススタディを示す。
論文 参考訳(メタデータ) (2023-09-12T13:51:29Z) - Quantifying and Analyzing Entity-level Memorization in Large Language
Models [4.59914731734176]
大規模言語モデル(LLM)は、トレーニングデータを記憶できることが証明されている。
記憶から生じるプライバシーリスクが注目されている。
実世界のシナリオに近い条件やメトリクスで記憶を定量化するための,詳細なエンティティレベルの定義を提案する。
論文 参考訳(メタデータ) (2023-08-30T03:06:47Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
論文 参考訳(メタデータ) (2023-08-06T18:38:52Z) - Quantifying Memorization Across Neural Language Models [61.58529162310382]
大規模言語モデル(LM)は、トレーニングデータの一部を記憶するために示され、適切に誘導されると、記憶されたデータを冗長に出力する。
これは、暗記がプライバシーを侵害し(ユーザーデータをエクスポーティングする)、実用性を低下させ(繰り返し覚えやすいテキストは、しばしば品質が低い)、公平性を損なうため、望ましくない。
本稿では、LMが記憶されたトレーニングデータを出力する度合いを定量化する3つの対数線形関係について述べる。
論文 参考訳(メタデータ) (2022-02-15T18:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。