Principles and Components of Federated Learning Architectures
- URL: http://arxiv.org/abs/2502.05273v2
- Date: Sun, 20 Apr 2025 17:59:28 GMT
- Title: Principles and Components of Federated Learning Architectures
- Authors: MD Abdullah Al Nasim, Fatema Tuj Johura Soshi, Parag Biswas, A. S. M Anas Ferdous, Abdur Rashid, Angona Biswas, Kishor Datta Gupta,
- Abstract summary: Federated Learning (FL) is a machine learning framework where multiple clients collaboratively construct a model under the orchestration of a central server.<n>This article provides an elaborate explanation of the inherent concepts and features found within federated learning architecture.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Federated Learning (FL) is a machine learning framework where multiple clients, from mobiles to enterprises, collaboratively construct a model under the orchestration of a central server but still retain the decentralized nature of the training data. This decentralized training of models offers numerous advantages, including cost savings, enhanced privacy, improved security, and compliance with legal requirements. However, for all its apparent advantages, FL is not immune to the limitations of conventional machine learning methodologies. This article provides an elaborate explanation of the inherent concepts and features found within federated learning architecture, addressing five key domains: system heterogeneity, data partitioning, machine learning models, communication protocols, and privacy techniques. This article also highlights the limitations in this domain and proposes avenues for future work. Besides, we provide a set of architectural patterns for federated learning systems, which are derived from the systematic survey of the literature. The main elements of FL, the fundamentals of Federated Learning, and a few architectural specifics will all be better understood with the aid of this research.
Related papers
- Federated Learning: A Survey on Privacy-Preserving Collaborative Intelligence [0.09208007322096533]
Federated Learning (FL) has emerged as a transformative paradigm in the field of distributed machine learning.
This survey provides a concise yet comprehensive overview of Federated Learning.
arXiv Detail & Related papers (2025-04-24T16:10:29Z) - Federated Learning in Practice: Reflections and Projections [17.445826363802997]
Federated Learning (FL) is a machine learning technique that enables multiple entities to collaboratively learn a shared model without exchanging their local data.
Production systems from organizations like Google, Apple, and Meta demonstrate the real-world applicability of FL.
We propose a redefined FL framework that prioritizes privacy principles rather than rigid definitions.
arXiv Detail & Related papers (2024-10-11T15:10:38Z) - A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning [0.0]
Federated learning(FL) has emerged as a promising paradigm for training machine learning models in a distributed and privacy-preserving manner.
The choice of methods used for models plays a crucial role in the performance, convergence speed, communication efficiency, privacy guarantees of federated learning systems.
Our research meticulously compares, categorizes, and delineates the merits and demerits of each technique, examining their applicability across diverse FL scenarios.
arXiv Detail & Related papers (2023-10-31T23:26:58Z) - Handling Data Heterogeneity via Architectural Design for Federated
Visual Recognition [16.50490537786593]
We study 19 visual recognition models from five different architectural families on four challenging FL datasets.
Our findings emphasize the importance of architectural design for computer vision tasks in practical scenarios.
arXiv Detail & Related papers (2023-10-23T17:59:16Z) - Serving Deep Learning Model in Relational Databases [70.53282490832189]
Serving deep learning (DL) models on relational data has become a critical requirement across diverse commercial and scientific domains.
We highlight three pivotal paradigms: The state-of-the-art DL-centric architecture offloads DL computations to dedicated DL frameworks.
The potential UDF-centric architecture encapsulates one or more tensor computations into User Defined Functions (UDFs) within the relational database management system (RDBMS)
arXiv Detail & Related papers (2023-10-07T06:01:35Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
This study explores the problem of Federated Learning (FL) by utilizing the Deep Equilibrium (DEQ) models instead of conventional deep learning networks.
We claim that incorporating DEQ models into the federated learning framework naturally addresses several open problems in FL.
To the best of our knowledge, this study is the first to establish a connection between DEQ models and federated learning.
arXiv Detail & Related papers (2023-05-29T22:51:40Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Introducing Federated Learning into Internet of Things ecosystems --
preliminary considerations [0.31402652384742363]
Federated learning (FL) was proposed to facilitate the training of models in a distributed environment.
It supports the protection of (local) data privacy and uses local resources for model training.
arXiv Detail & Related papers (2022-07-15T18:48:57Z) - FLRA: A Reference Architecture for Federated Learning Systems [8.180947044673639]
Federated learning is an emerging machine learning paradigm that enables multiple devices to train models locally and formulate a global model, without sharing the clients' local data.
We propose FLRA, a reference architecture for federated learning systems, which provides a template design for federated learning-based solutions.
arXiv Detail & Related papers (2021-06-22T06:59:19Z) - From Distributed Machine Learning to Federated Learning: A Survey [49.7569746460225]
Federated learning emerges as an efficient approach to exploit distributed data and computing resources.
We propose a functional architecture of federated learning systems and a taxonomy of related techniques.
We present the distributed training, data communication, and security of FL systems.
arXiv Detail & Related papers (2021-04-29T14:15:11Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Architectural Patterns for the Design of Federated Learning Systems [12.330671239159102]
Federated learning has received fast-growing interests from academia and industry to tackle the challenges of data hungriness and privacy in machine learning.
This paper presents a collection of architectural patterns to deal with the design challenges of federated learning systems.
arXiv Detail & Related papers (2021-01-07T05:11:09Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - IBM Federated Learning: an Enterprise Framework White Paper V0.1 [28.21579297214125]
Federated Learning (FL) is an approach to conduct machine learning without centralizing training data in a single place.
The framework applies to both Deep Neural Networks as well as traditional'' approaches for the most common machine learning libraries.
arXiv Detail & Related papers (2020-07-22T05:32:00Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.