論文の概要: Using Federated Machine Learning in Predictive Maintenance of Jet Engines
- arxiv url: http://arxiv.org/abs/2502.05321v1
- Date: Fri, 07 Feb 2025 20:41:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:30:58.596602
- Title: Using Federated Machine Learning in Predictive Maintenance of Jet Engines
- Title(参考訳): ジェットエンジンの予測保守におけるフェデレーション機械学習の利用
- Authors: Asaph Matheus Barbosa, Thao Vy Nhat Ngo, Elaheh Jafarigol, Theodore B. Trafalis, Emuobosa P. Ojoboh,
- Abstract要約: 本稿では,連合型機械学習フレームワークを用いて,タービンジェットエンジンの残留実用寿命(RUL)を予測することを目的とする。
このシステムは、RUL予測の精度を高めるために、エンジンデータの複雑な計算とパターンをキャプチャすることを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The goal of this paper is to predict the Remaining Useful Life (RUL) of turbine jet engines using a federated machine learning framework. Federated Learning enables multiple edge devices/nodes or servers to collaboratively train a shared model without sharing sensitive data, thus preserving data privacy and security. By implementing a nonlinear model, the system aims to capture complex relationships and patterns in the engine data to enhance the accuracy of RUL predictions. This approach leverages decentralized computation, allowing models to be trained locally at each device before aggregating the learned weights at a central server. By predicting the RUL of jet engines accurately, maintenance schedules can be optimized, downtime reduced, and operational efficiency improved, ultimately leading to cost savings and enhanced performance in the aviation industry. Computational results are provided by using the C-MAPSS dataset which is publicly available on the NASA website and is a valuable resource for studying and analyzing engine degradation behaviors in various operational scenarios.
- Abstract(参考訳): 本研究の目的は,連合型機械学習フレームワークを用いて,タービンジェットエンジンの残留寿命(RUL)を予測することである。
Federated Learningは、複数のエッジデバイス/ノードまたはサーバが機密データを共有せずに協調的に共有モデルをトレーニングし、データのプライバシとセキュリティを保護する。
非線形モデルを実装することにより、エンジンデータの複雑な関係やパターンを捕捉し、RUL予測の精度を高めることを目的とする。
このアプローチは分散計算を活用するため、中央サーバで学習した重みを集約する前に、各デバイスでモデルをローカルにトレーニングすることができる。
ジェットエンジンのRULを正確に予測することにより、メンテナンススケジュールを最適化し、ダウンタイムを低減し、運用効率を向上し、最終的にコスト削減と航空業界の性能向上につながった。
計算結果は、NASAのウェブサイトで公開されているC-MAPSSデータセットを使用して提供され、様々な運用シナリオにおけるエンジン劣化挙動の研究と分析に有用なリソースである。
関連論文リスト
- Fuel Consumption Prediction for a Passenger Ferry using Machine Learning
and In-service Data: A Comparative Study [5.516843968790116]
本稿では,旅客船から収集したサービス内データを用いて,燃料消費を予測するモデルを提案する。
最高の予測性能は、ブーチングアンサンブルアプローチであるXGboost技術を用いて開発されたモデルから得られる。
論文 参考訳(メタデータ) (2023-10-19T19:35:38Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
産業システムは、運用効率を高め、ダウンタイムを減らすための信頼性の高い予測保守戦略を要求する。
本稿では,Transformerモデルに基づくニューラルネットワークと深部強化学習(DRL)アルゴリズムの機能を活用し,システムの保守動作を最適化する統合フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T02:27:54Z) - An Interpretable Systematic Review of Machine Learning Models for
Predictive Maintenance of Aircraft Engine [0.12289361708127873]
本稿では,航空機エンジンの保守性を予測するため,各種機械学習モデルと深層学習モデルの解釈可能なレビューを行う。
本研究では, LSTM, Bi-LSTM, RNN, Bi-RNN GRU, Random Forest, KNN, Naive Bayes, Gradient Boostingを用いて, 航空機のエンジン故障の予測にセンサデータを用いた。
97.8%、97.14%、96.42%はGRU、Bi-LSTM、LSTMによってそれぞれ得られる。
論文 参考訳(メタデータ) (2023-09-23T08:54:10Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - FINETUNA: Fine-tuning Accelerated Molecular Simulations [5.543169726358164]
本稿では,原子系のシミュレーションを効率的かつ正確に高速化するためのオンライン能動的学習フレームワークを提案する。
事前学習されたモデルから事前情報を組み込む伝達学習法は、DFT計算の数を91%減らしてシミュレーションを加速する。
30個のベンチマーク吸着剤触媒系の実験により,事前学習したモデルから事前情報を組み込むトランスファー学習法がシミュレーションを加速し,DFT計算の数を91%削減した。
論文 参考訳(メタデータ) (2022-05-02T21:36:01Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - Autoencoding Features for Aviation Machine Learning Problems [0.0]
本研究では,航空学習問題に対する効果的な特徴を抽出するために,教師なし学習手法であるオートエンコーダについて検討した。
研究結果から,オートエンコーダは,フライトトラックデータに有効な特徴を自動的に抽出するだけでなく,効率的な深部清浄データを抽出し,データサイエンティストの作業量を削減できることが示唆された。
開発されたアプリケーションと技術は、現在および将来の機械学習研究の有効性を改善するために、航空コミュニティ全体と共有されている。
論文 参考訳(メタデータ) (2020-11-03T04:09:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。