論文の概要: An Interpretable Systematic Review of Machine Learning Models for
Predictive Maintenance of Aircraft Engine
- arxiv url: http://arxiv.org/abs/2309.13310v1
- Date: Sat, 23 Sep 2023 08:54:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 20:44:16.844109
- Title: An Interpretable Systematic Review of Machine Learning Models for
Predictive Maintenance of Aircraft Engine
- Title(参考訳): 航空機エンジンの予測保守のための機械学習モデルの解釈可能なシステムレビュー
- Authors: Abdullah Al Hasib, Ashikur Rahman, Mahpara Khabir and Md. Tanvir Rouf
Shawon
- Abstract要約: 本稿では,航空機エンジンの保守性を予測するため,各種機械学習モデルと深層学習モデルの解釈可能なレビューを行う。
本研究では, LSTM, Bi-LSTM, RNN, Bi-RNN GRU, Random Forest, KNN, Naive Bayes, Gradient Boostingを用いて, 航空機のエンジン故障の予測にセンサデータを用いた。
97.8%、97.14%、96.42%はGRU、Bi-LSTM、LSTMによってそれぞれ得られる。
- 参考スコア(独自算出の注目度): 0.12289361708127873
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents an interpretable review of various machine learning and
deep learning models to predict the maintenance of aircraft engine to avoid any
kind of disaster. One of the advantages of the strategy is that it can work
with modest datasets. In this study, sensor data is utilized to predict
aircraft engine failure within a predetermined number of cycles using LSTM,
Bi-LSTM, RNN, Bi-RNN GRU, Random Forest, KNN, Naive Bayes, and Gradient
Boosting. We explain how deep learning and machine learning can be used to
generate predictions in predictive maintenance using a straightforward scenario
with just one data source. We applied lime to the models to help us understand
why machine learning models did not perform well than deep learning models. An
extensive analysis of the model's behavior is presented for several test data
to understand the black box scenario of the models. A lucrative accuracy of
97.8%, 97.14%, and 96.42% are achieved by GRU, Bi-LSTM, and LSTM respectively
which denotes the capability of the models to predict maintenance at an early
stage.
- Abstract(参考訳): 本稿では,各種機械学習モデルと深層学習モデルの解釈可能なレビューを行い,航空機エンジンのメンテナンスを予測し,災害を避ける。
この戦略の利点の1つは、控えめなデータセットで動作できることである。
本研究では, LSTM, Bi-LSTM, RNN, Bi-RNN GRU, Random Forest, KNN, Naive Bayes, Gradient Boostingを用いて, 航空機のエンジン故障の予測にセンサデータを用いた。
本稿では,1つのデータソースで単純なシナリオを用いて,ディープラーニングと機械学習を用いて予測保守の予測を生成する方法について説明する。
機械学習モデルがディープラーニングモデルよりもうまく機能しなかった理由を理解するために、モデルにライムを適用しました。
モデルのブラックボックスシナリオを理解するために、いくつかのテストデータに対して、モデルの振る舞いを広範囲に分析する。
gru, bi-lstm, lstmによって97.8%, 97.14%, 96.42%の利益率を達成し, 早期のメンテナンス予測能力を示す。
関連論文リスト
- Addressing Bias Through Ensemble Learning and Regularized Fine-Tuning [0.2812395851874055]
本稿では,AIモデルのバイアスを取り除くために,複数の手法を用いた包括的アプローチを提案する。
我々は、データ分割、局所訓練、正規化ファインチューニングを通じて、事前訓練されたモデルのカウンターバイアスで複数のモデルを訓練する。
我々は、単一のバイアスのないニューラルネットワークをもたらす知識蒸留を用いて、ソリューションを結論付けている。
論文 参考訳(メタデータ) (2024-02-01T09:24:36Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - EAMDrift: An interpretable self retrain model for time series [0.0]
EAMDrift(EAMDrift)は、複数の個人予測器から予測を合成し、性能指標に従って予測を重み付けする新しい手法である。
EAMDriftはデータのアウト・オブ・ディストリビューションパターンに自動的に適応し、各瞬間に使用する最も適切なモデルを特定するように設計されている。
本研究は,EAMDriftが個々のベースラインモデルより20%優れ,非解釈可能なアンサンブルモデルに匹敵する精度が得られることを示す。
論文 参考訳(メタデータ) (2023-05-31T13:25:26Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
本稿では,モデルアーキテクチャの解釈可能性と信頼性,外挿を行うためのツールボックスを提案する。
与えられたテストポイントでの予測に対する入力データの影響、モデル予測の不確実性の推定、およびモデル予測の不可知スコアを提供する。
我々の研究は、物理学やより一般的には科学に適用されたMLにおける解釈可能性と信頼性の方法の体系的利用への道を開く。
論文 参考訳(メタデータ) (2021-08-04T16:32:59Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - In Pursuit of Interpretable, Fair and Accurate Machine Learning for
Criminal Recidivism Prediction [19.346391120556884]
本研究では、二項予測よりも確率を出力する解釈可能なモデルを訓練し、定量的フェアネス定義を用いてモデルを評価する。
フロリダ州とケンタッキー州の2つの異なる犯罪再犯データセット上で,ブラックボックスと解釈可能なMLモデルを生成した。
いくつかの解釈可能なMLモデルは、ブラックボックスMLモデルと同様に復調を予測でき、CompASやアーノルドPSAよりも正確である。
論文 参考訳(メタデータ) (2020-05-08T17:16:31Z) - Energy Predictive Models for Convolutional Neural Networks on Mobile
Platforms [0.0]
モバイルデバイスにディープラーニングモデルをデプロイする場合、エネルギー利用は重要な懸念事項である。
我々はJetson TX1とSnapdragon 820上に12の代表的なConvolutional NeuralNetworks(ConvNets)を用いて、完全な接続層とプール層のための層型予測モデルを構築した。
ハードウェアとソフトウェアの組み合わせによるテストConvNetの全体的なエネルギー予測において,精度は76%から85%,モデル複雑度は1。
論文 参考訳(メタデータ) (2020-04-10T17:35:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。