LRA-GNN: Latent Relation-Aware Graph Neural Network with Initial and Dynamic Residual for Facial Age Estimation
- URL: http://arxiv.org/abs/2502.05423v1
- Date: Sat, 08 Feb 2025 03:17:00 GMT
- Title: LRA-GNN: Latent Relation-Aware Graph Neural Network with Initial and Dynamic Residual for Facial Age Estimation
- Authors: Yiping Zhang, Yuntao Shou, Wei Ai, Tao Meng, Keqin Li,
- Abstract summary: We propose a new Latent Relation-Aware Graph Neural Network with Initial and Dynamic Residual (LRA-GNN) to achieve robust and comprehensive facial representation.
Our proposed framework surpasses the state-of-the-art baselines on several age estimation benchmarks, demonstrating its strength and effectiveness.
- Score: 13.197551708300345
- License:
- Abstract: Face information is mainly concentrated among facial key points, and frontier research has begun to use graph neural networks to segment faces into patches as nodes to model complex face representations. However, these methods construct node-to-node relations based on similarity thresholds, so there is a problem that some latent relations are missing. These latent relations are crucial for deep semantic representation of face aging. In this novel, we propose a new Latent Relation-Aware Graph Neural Network with Initial and Dynamic Residual (LRA-GNN) to achieve robust and comprehensive facial representation. Specifically, we first construct an initial graph utilizing facial key points as prior knowledge, and then a random walk strategy is employed to the initial graph for obtaining the global structure, both of which together guide the subsequent effective exploration and comprehensive representation. Then LRA-GNN leverages the multi-attention mechanism to capture the latent relations and generates a set of fully connected graphs containing rich facial information and complete structure based on the aforementioned guidance. To avoid over-smoothing issues for deep feature extraction on the fully connected graphs, the deep residual graph convolutional networks are carefully designed, which fuse adaptive initial residuals and dynamic developmental residuals to ensure the consistency and diversity of information. Finally, to improve the estimation accuracy and generalization ability, progressive reinforcement learning is proposed to optimize the ensemble classification regressor. Our proposed framework surpasses the state-of-the-art baselines on several age estimation benchmarks, demonstrating its strength and effectiveness.
Related papers
- Perturbation Ontology based Graph Attention Networks [26.95077612390953]
Ontology-based Graph Attention Networks (POGAT) is a novel methodology that combines ontology subgraphs with an advanced self-supervised learning paradigm to achieve a deep contextual understanding.
POGAT significantly outperforms state-of-the-art baselines, achieving a groundbreaking improvement of up to 10.78% in F1-score for the critical task of link prediction and 12.01% in Micro-F1 for the critical task of node classification.
arXiv Detail & Related papers (2024-11-27T17:12:14Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - GINTRIP: Interpretable Temporal Graph Regression using Information bottleneck and Prototype-based method [7.570969633244954]
We introduce a novel approach to enhance the interpretability of temporal graph regression models.
We derive a novel theoretical bound on mutual information (MI), extending the applicability of IB principles to graph regression tasks.
Our model is evaluated on real-world traffic datasets, outperforming existing methods in both forecasting accuracy and interpretability-related metrics.
arXiv Detail & Related papers (2024-09-17T08:58:40Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Semantic Graph Neural Network with Multi-measure Learning for
Semi-supervised Classification [5.000404730573809]
Graph Neural Networks (GNNs) have attracted increasing attention in recent years.
Recent studies have shown that GNNs are vulnerable to the complex underlying structure of the graph.
We propose a novel framework for semi-supervised classification.
arXiv Detail & Related papers (2022-12-04T06:17:11Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
Simplicial neural networks (SNN) have recently emerged as the newest direction in graph learning.
We present Block Simplicial Complex Neural Networks (BScNets) model for link prediction.
BScNets outperforms state-of-the-art models by a significant margin while maintaining low costs.
arXiv Detail & Related papers (2021-12-13T17:35:54Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Graphs, Entities, and Step Mixture [11.162937043309478]
We propose a new graph neural network that considers both edge-based neighborhood relationships and node-based entity features.
With intensive experiments, we show that the proposed GESM achieves state-of-the-art or comparable performances on eight benchmark graph datasets.
arXiv Detail & Related papers (2020-05-18T06:57:02Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.