論文の概要: A Framework for On the Fly Input Refinement for Deep Learning Models
- arxiv url: http://arxiv.org/abs/2502.05456v1
- Date: Sat, 08 Feb 2025 05:41:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:34:19.487298
- Title: A Framework for On the Fly Input Refinement for Deep Learning Models
- Title(参考訳): 深層学習モデルのためのフライインプット・リファインメントのためのフレームワーク
- Authors: Ravishka Rathnasuriya,
- Abstract要約: ディープラーニングモデルは、最新のデータでトレーニングされた場合でも、現実世界のアプリケーションで顕著な誤予測を示す。
本研究では,入力検証と変換によるモデル性能向上を目的とした適応型オンザフライ入力改善フレームワークを提案する。
スケーラブルでリソース効率のよいソリューションとして、このフレームワークは、ソフトウェア工学、自然言語処理、コンピュータビジョンにおける高度なアプリケーションに対して、大きな可能性を秘めている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Advancements in deep learning have significantly improved model performance across tasks involving code, text, and image processing. However, these models still exhibit notable mispredictions in real-world applications, even when trained on up-to-date data. Such failures often arise from slight variations in inputs such as minor syntax changes in code, rephrasing in text, or subtle lighting shifts in images that reveal inherent limitations in these models' capability to generalize effectively. Traditional approaches to address these challenges involve retraining, a resource-intensive process that demands significant investments in data labeling, model updates, and redeployment. This research introduces an adaptive, on-the-fly input refinement framework aimed at improving model performance through input validation and transformation. The input validation component detects inputs likely to cause errors, while input transformation applies domain-specific adjustments to better align these inputs with the model's handling capabilities. This dual strategy reduces mispredictions across various domains, boosting model performance without necessitating retraining. As a scalable and resource-efficient solution, this framework holds significant promise for high-stakes applications in software engineering, natural language processing, and computer vision.
- Abstract(参考訳): ディープラーニングの進歩は、コード、テキスト、画像処理を含むタスク全体のモデルパフォーマンスを大幅に改善した。
しかしながら、これらのモデルは、最新のデータでトレーニングされた場合でも、現実世界のアプリケーションで顕著な誤った予測を示す。
このような失敗は、コードの微妙な構文変更、テキストでのリフレッシング、あるいはこれらのモデルが効果的に一般化する能力に固有の制限を示す画像の微妙な照明シフトなど、入力のわずかなバリエーションから生じることが多い。
これらの課題に対処する従来のアプローチには、リソース集約的なプロセスであるリトレーニング(retraining)、データラベリング、モデル更新、再デプロイ(reeployment)などがある。
本研究では,入力検証と変換によるモデル性能向上を目的とした適応型オンザフライ入力改善フレームワークを提案する。
入力検証コンポーネントは、入力がエラーを引き起こす可能性のある入力を検出し、入力変換はドメイン固有の調整を適用して、これらの入力をモデルのハンドリング機能と整合させる。
この二重戦略は、さまざまなドメインにわたる誤予測を低減し、再トレーニングを必要とせずにモデルパフォーマンスを向上する。
スケーラブルでリソース効率のよいソリューションとして、このフレームワークは、ソフトウェア工学、自然言語処理、コンピュータビジョンにおける高度なアプリケーションに対して、大きな可能性を秘めている。
関連論文リスト
- Boosting Alignment for Post-Unlearning Text-to-Image Generative Models [55.82190434534429]
大規模な生成モデルは、大量のデータによって推進される印象的な画像生成能力を示している。
これはしばしば必然的に有害なコンテンツや不適切なコンテンツを生み出し、著作権の懸念を引き起こす。
学習しない反復ごとに最適なモデル更新を求めるフレームワークを提案し、両方の目的に対して単調な改善を確実にする。
論文 参考訳(メタデータ) (2024-12-09T21:36:10Z) - Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment [57.0121616203175]
本研究では,視覚言語アライメントを改善するための細粒度検証器として,モデル自身のビジュアルエンコーダを利用する新たな自己アライメント手法であるFiSAOを提案する。
ビジョンエンコーダからのトークンレベルのフィードバックを活用することで、FiSAOは視覚言語アライメントを大幅に改善する。
論文 参考訳(メタデータ) (2024-10-18T03:34:32Z) - Adjusting Pretrained Backbones for Performativity [34.390793811659556]
本稿では,事前学習したバックボーンをモジュラー方式で演奏性に適応させる新しい手法を提案する。
再学習軌道に沿った損失を減らし、候補モデルの中から効果的に選択し、性能劣化を予測できることを示す。
論文 参考訳(メタデータ) (2024-10-06T14:41:13Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
限られたデータセットに基づいて,効率的な自己回帰に基づく視覚モデルを構築する。
このモデルは,高レベル・低レベルのセマンティック理解の両方にまたがる視覚的タスクにおいて,その習熟度をいかに達成するかを実証する。
我々の経験的評価は、モデルが様々なタスクに適応する際の機敏さを強調し、パラメータフットプリントの大幅な削減を図った。
論文 参考訳(メタデータ) (2024-02-07T13:41:53Z) - Sparse Training for Federated Learning with Regularized Error Correction [9.852567834643292]
Federated Learning(FL)は、ディープニューラルネットワーク(DNN)モデルをトレーニングする上で大きなメリットがあるため、大きな関心を集めている。
FLAREは、FLプロセスへの埋め込みを正規化した更新モデルの累積引き込みによる新しいスパーストレーニング手法を提案する。
FLAREの性能は、多種多様な複雑なモデルに関する広範な実験を通じて検証され、顕著なスパーシリティレベル(現在の最先端の10倍以上の)を達成するとともに、精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-12-21T12:36:53Z) - Robustness, Evaluation and Adaptation of Machine Learning Models in the
Wild [4.304803366354879]
本研究では、ドメインシフトに対するロバスト性の障害の原因と、ドメインロバストモデルをトレーニングするためのアルゴリズムを提案する。
モデル脆性の鍵となる原因はドメイン過度な適合であり、新しいトレーニングアルゴリズムはドメイン一般仮説を抑え、奨励する。
論文 参考訳(メタデータ) (2023-03-05T21:41:16Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
相関情報ボトルネック (CIB) は圧縮と表現の冗長性のトレードオフを求める。
マルチモーダル入力と表現の相互情報に対して,理論上界を厳密に導出する。
論文 参考訳(メタデータ) (2022-09-14T22:04:10Z) - Improving generalization with synthetic training data for deep learning
based quality inspection [0.0]
教師付きディープラーニングは、トレーニングのために大量の注釈付きイメージを必要とする。
実際には、そのようなデータの収集と注釈付けは費用がかかり、手間がかかる。
ランダムに生成した合成訓練画像を用いることで、領域不安定性に対処できることを示す。
論文 参考訳(メタデータ) (2022-02-25T16:51:01Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。