Predictive Modeling of Classical and Quantum Mechanics Using Machine Learning: A Case Study with TensorFlow
- URL: http://arxiv.org/abs/2502.05621v1
- Date: Sat, 08 Feb 2025 16:02:03 GMT
- Title: Predictive Modeling of Classical and Quantum Mechanics Using Machine Learning: A Case Study with TensorFlow
- Authors: Enis Yazici,
- Abstract summary: We present several machine learning approaches for predicting the behavior of both classical and quantum systems.
For the classical domain, we model a pendulum subject to multiple forces using both a standard artificial neural network (ANN) and a physics-informed neural network (PINN)
- Score: 0.0
- License:
- Abstract: In this paper, we present several machine learning approaches for predicting the behavior of both classical and quantum systems. For the classical domain, we model a pendulum subject to multiple forces using both a standard artificial neural network (ANN) and a physics-informed neural network (PINN). For the quantum domain, we predict the ground state energy of a quantum anharmonic oscillator from discretized potential data using an ANN with convolutional layers (CNN), a long short-term memory (LSTM) network, and a PINN that incorporates the Schr\"odinger equation. Detailed training outputs and comparisons are provided.
Related papers
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
Modern AI systems are often built on neural networks.
We propose a framework where classical neural network layers are gradually replaced by quantum layers.
We conduct numerical experiments on image classification datasets to demonstrate the change of performance brought by the systematic introduction of quantum components.
arXiv Detail & Related papers (2024-09-26T07:01:29Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - A Quantum Leaky Integrate-and-Fire Spiking Neuron and Network [0.0]
We introduce a new software model for quantum neuromorphic computing.
We use these neurons as building blocks in the construction of a quantum spiking neural network (QSNN) and a quantum spiking convolutional neural network (QSCNN)
arXiv Detail & Related papers (2024-07-23T11:38:06Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Classical-to-quantum convolutional neural network transfer learning [1.9336815376402723]
Machine learning using quantum convolutional neural networks (QCNNs) has demonstrated success in both quantum and classical data classification.
We propose transfer learning as an effective strategy for utilizing small QCNNs in the noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2022-08-31T09:15:37Z) - Phase diagram of quantum generalized Potts-Hopfield neural networks [0.0]
We introduce and analyze an open quantum generalization of the q-state Potts-Hopfield neural network.
The dynamics of this many-body system is formulated in terms of a Markovian master equation of Lindblad type.
arXiv Detail & Related papers (2021-09-21T12:48:49Z) - Mutual Reinforcement between Neural Networks and Quantum Physics [0.0]
Quantum machine learning emerges from the symbiosis of quantum mechanics and machine learning.
The use of classical machine learning as a tool applied to quantum physics problems.
The design of a quantum neural network based on the dynamics of a quantum perceptron with the application of shortcuts to adiabaticity gives rise to a short operation time and robust performance.
arXiv Detail & Related papers (2021-05-27T16:20:50Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.