論文の概要: Rethinking Link Prediction for Directed Graphs
- arxiv url: http://arxiv.org/abs/2502.05724v1
- Date: Sat, 08 Feb 2025 23:51:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:34:33.791907
- Title: Rethinking Link Prediction for Directed Graphs
- Title(参考訳): ダイレクトグラフにおけるリンク予測の再考
- Authors: Mingguo He, Yuhe Guo, Yanping Zheng, Zhewei Wei, Stephan Günnemann, Xiaokui Xiao,
- Abstract要約: 有向グラフのリンク予測は、様々な現実世界のアプリケーションにとって重要な課題である。
埋め込み手法とグラフニューラルネットワーク(GNN)の最近の進歩は、有望な改善を示している。
本稿では,既存手法の表現性を評価するための統一的なフレームワークを提案し,二重埋め込みとデコーダ設計が性能に与える影響を強調した。
- 参考スコア(独自算出の注目度): 73.36395969796804
- License:
- Abstract: Link prediction for directed graphs is a crucial task with diverse real-world applications. Recent advances in embedding methods and Graph Neural Networks (GNNs) have shown promising improvements. However, these methods often lack a thorough analysis of embedding expressiveness and suffer from ineffective benchmarks for a fair evaluation. In this paper, we propose a unified framework to assess the expressiveness of existing methods, highlighting the impact of dual embeddings and decoder design on performance. To address limitations in current experimental setups, we introduce DirLinkBench, a robust new benchmark with comprehensive coverage and standardized evaluation. The results show that current methods struggle to achieve strong performance on the new benchmark, while DiGAE outperforms others overall. We further revisit DiGAE theoretically, showing its graph convolution aligns with GCN on an undirected bipartite graph. Inspired by these insights, we propose a novel spectral directed graph auto-encoder SDGAE that achieves SOTA results on DirLinkBench. Finally, we analyze key factors influencing directed link prediction and highlight open challenges.
- Abstract(参考訳): 有向グラフのリンク予測は、様々な現実世界のアプリケーションにとって重要な課題である。
埋め込み手法とグラフニューラルネットワーク(GNN)の最近の進歩は、有望な改善を示している。
しかし、これらの手法は、しばしば埋め込み表現性の徹底的な分析を欠き、公平な評価のために非効率なベンチマークに悩まされる。
本稿では,既存手法の表現性を評価するための統一的なフレームワークを提案し,二重埋め込みとデコーダ設計が性能に与える影響を強調した。
現在の実験的な設定の限界に対処するために、包括的カバレッジと標準化された評価を備えた堅牢な新しいベンチマークであるDirLinkBenchを紹介します。
その結果、現在の手法は、新しいベンチマークで高いパフォーマンスを達成するのに苦労していることが示され、DiGAEは全体として他の手法よりも優れていた。
さらに、DGAEを理論的に再検討し、そのグラフの畳み込みが無向二部グラフ上のGCNと整合していることを示す。
これらの知見に触発されて、DirLinkBench上でSOTA結果を得る新しいスペクトル指向グラフ自動エンコーダSDGAEを提案する。
最後に、有向リンク予測に影響を及ぼす重要な要因を分析し、オープンな課題を強調する。
関連論文リスト
- Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
グラフの構造と表現を学習するための生成訓練と識別訓練のジョイントに基づく教師なし手法を提案する。
本稿では,ECL-GSR(Energy-based Contrastive Learning)によるグラフ構造再構成(GSR)フレームワークを提案する。
ECL-GSRは、主要なベースラインに対するサンプルやメモリの少ない高速なトレーニングを実現し、下流タスクの単純さと効率性を強調している。
論文 参考訳(メタデータ) (2024-12-20T04:05:09Z) - GC4NC: A Benchmark Framework for Graph Condensation on Node Classification with New Insights [30.796414860754837]
グラフ凝縮(GC)は、元のグラフの本質的な情報を保持する、はるかに小さなグラフを学習するために設計された新興技術である。
本稿では,ノード分類における多様なGC手法を評価するための包括的フレームワークである textbfGC4NC を紹介する。
私たちの体系的な評価は、凝縮グラフがどのように振る舞うか、そしてその成功を導く重要な設計選択について、新しい洞察を与えます。
論文 参考訳(メタデータ) (2024-06-24T15:17:49Z) - Link Prediction under Heterophily: A Physics-Inspired Graph Neural
Network Approach [5.187216033152917]
本稿では,リンク予測のためのGRAFFの拡張であるGRAFF-LPを紹介する。
ヘテロ親和性グラフの最近のコレクションにおける有効性を評価する。
論文 参考訳(メタデータ) (2024-02-22T18:56:31Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - Edge Directionality Improves Learning on Heterophilic Graphs [42.5099159786891]
我々は、有向グラフを深層学習するための新しいフレームワークであるDir-GNN(Directed Graph Neural Network)を紹介する。
Dir-GNNは、任意のメッセージパッシングニューラルネットワーク(MPNN)を拡張して、エッジ指向性情報を考慮するために使用することができる。
我々は,Dir-GNNが従来のMPNNよりも高い指向性Weisfeiler-Lehmanテストの表現性に一致することを証明した。
論文 参考訳(メタデータ) (2023-05-17T18:06:43Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
グラフの外れ値検出は、多くのアプリケーションにおいて、新しいが重要な機械学習タスクである。
UNODと呼ばれるグラフに対して、最初の包括的教師なしノード外乱検出ベンチマークを示す。
論文 参考訳(メタデータ) (2022-06-21T01:46:38Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - Modularity-Aware Graph Autoencoders for Joint Community Detection and
Link Prediction [27.570978996576503]
グラフオートエンコーダ(GAE)と変分グラフオートエンコーダ(VGAE)はリンク予測の強力な手法として登場した。
GAEとVGAEによるコミュニティ検出がどの程度改善できるかは、まだ不明である。
これら2つのタスクを高い精度で共同で処理することは可能であることを示す。
論文 参考訳(メタデータ) (2022-02-02T11:07:11Z) - Deepened Graph Auto-Encoders Help Stabilize and Enhance Link Prediction [11.927046591097623]
リンク予測は、浅層グラフオートエンコーダ(GAE)アーキテクチャの1層または2層に基づく現在の最先端モデルを用いて、比較的未研究のグラフ学習タスクである。
本論文では,浅いGAEと変動GAEしか使用できないリンク予測の現在の手法の限界に対処することに焦点をあてる。
提案手法はGAEのアーキテクチャに標準オートエンコーダ(AE)を革新的に組み込んでおり、標準AEは隣接情報とノード機能をシームレスに統合することで必要不可欠な低次元表現を学習する。
論文 参考訳(メタデータ) (2021-03-21T14:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。