Towards Autonomous Experimentation: Bayesian Optimization over Problem Formulation Space for Accelerated Alloy Development
- URL: http://arxiv.org/abs/2502.05735v1
- Date: Sun, 09 Feb 2025 01:05:58 GMT
- Title: Towards Autonomous Experimentation: Bayesian Optimization over Problem Formulation Space for Accelerated Alloy Development
- Authors: Danial Khatamsaz, Joseph Wagner, Brent Vela, Raymundo Arroyave, Douglas L. Allaire,
- Abstract summary: We introduce a novel framework that leverages Bayesian optimization over a problem formulation space to identify optimal design formulations.
We demonstrate the efficacy of our method through an in silico case study on a Mo-Nb-Ti-V-W alloy system targeted for gas turbine engine blade applications.
Future work will incorporate human feedback to further enhance the adaptability of the system in real-world experimental settings.
- Score: 0.31457219084519
- License:
- Abstract: Accelerated discovery in materials science demands autonomous systems capable of dynamically formulating and solving design problems. In this work, we introduce a novel framework that leverages Bayesian optimization over a problem formulation space to identify optimal design formulations in line with decision-maker preferences. By mapping various design scenarios to a multi attribute utility function, our approach enables the system to balance conflicting objectives such as ductility, yield strength, density, and solidification range without requiring an exact problem definition at the outset. We demonstrate the efficacy of our method through an in silico case study on a Mo-Nb-Ti-V-W alloy system targeted for gas turbine engine blade applications. The framework converges on a sweet spot that satisfies critical performance thresholds, illustrating that integrating problem formulation discovery into the autonomous design loop can significantly streamline the experimental process. Future work will incorporate human feedback to further enhance the adaptability of the system in real-world experimental settings.
Related papers
- Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - High-Dimensional Bayesian Optimisation with Large-Scale Constraints --
An Application to Aeroelastic Tailoring [1.8004890248574648]
Design optimisation potentially leads to lightweight aircraft structures with lower environmental impact.
Due to the high number of design variables and constraints, these problems are ordinarily solved using gradient-based optimisation methods.
The present study attempts to tackle the problem by using high-dimensional Bayesian optimisation in combination with a dimensionality reduction approach.
arXiv Detail & Related papers (2023-12-14T12:51:29Z) - Bayesian Quality-Diversity approaches for constrained optimization
problems with mixed continuous, discrete and categorical variables [0.3626013617212667]
A new Quality-Diversity methodology based on mixed variables is proposed in the context of limited simulation budget.
The proposed approach provides valuable trade-offs for decision-markers for complex system design.
arXiv Detail & Related papers (2023-09-11T14:29:47Z) - Diffusion Generative Inverse Design [28.04683283070957]
Inverse design refers to the problem of optimizing the input of an objective function in order to enact a target outcome.
Recent developments in learned graph neural networks (GNNs) can be used for accurate, efficient, differentiable estimation of simulator dynamics.
We show how denoising diffusion diffusion models can be used to solve inverse design problems efficiently and propose a particle sampling algorithm for further improving their efficiency.
arXiv Detail & Related papers (2023-09-05T08:32:07Z) - CO-BED: Information-Theoretic Contextual Optimization via Bayesian
Experimental Design [31.247108087199095]
CO-BED is a model-agnostic framework for designing contextual experiments using information-theoretic principles.
As a result, CO-BED provides a general and automated solution to a wide range of contextual optimization problems.
arXiv Detail & Related papers (2023-02-27T18:14:13Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
Best-Response Constraint (BRC) is a general learning framework to explicitly formulate the potential dependency of the generator on the discriminator.
We show that even with different motivations and formulations, a variety of existing GANs ALL can be uniformly improved by our flexible BRC methodology.
arXiv Detail & Related papers (2022-05-20T12:42:41Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Learning the Solution Manifold in Optimization and Its Application in
Motion Planning [4.177892889752434]
We learn manifold on the variable such as the variable such model represents an infinite set of solutions.
In our framework, we reduce problem estimation by using this importance.
We apply to motion-planning problems, which involve the optimization of high-dimensional parameters.
arXiv Detail & Related papers (2020-07-24T08:05:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.