EPBC-YOLOv8: An efficient and accurate improved YOLOv8 underwater detector based on an attention mechanism
- URL: http://arxiv.org/abs/2502.05788v1
- Date: Sun, 09 Feb 2025 06:09:56 GMT
- Title: EPBC-YOLOv8: An efficient and accurate improved YOLOv8 underwater detector based on an attention mechanism
- Authors: Xing Jiang, Xiting Zhuang, Jisheng Chen, Jian Zhang,
- Abstract summary: We enhance underwater target detection by integrating channel and spatial attention into YOLOv8's backbone.
Our framework addresses underwater image degradation, achieving mAP at 0.5 scores of 76.7 percent and 79.0 percent on datasets.
These scores are 2.3 percent and 0.7 percent higher than the original YOLOv8, showcasing enhanced precision in detecting marine organisms.
- Score: 4.081096260595706
- License:
- Abstract: In this study, we enhance underwater target detection by integrating channel and spatial attention into YOLOv8's backbone, applying Pointwise Convolution in FasterNeXt for the FasterPW model, and leveraging Weighted Concat in a BiFPN-inspired WFPN structure for improved cross-scale connections and robustness. Utilizing CARAFE for refined feature reassembly, our framework addresses underwater image degradation, achieving mAP at 0.5 scores of 76.7 percent and 79.0 percent on URPC2019 and URPC2020 datasets, respectively. These scores are 2.3 percent and 0.7 percent higher than the original YOLOv8, showcasing enhanced precision in detecting marine organisms.
Related papers
- A method for detecting dead fish on large water surfaces based on improved YOLOv10 [0.6874745415692134]
Dead fish can cause significant issues such as water quality deterioration, ecosystem damage, and disease transmission.
This paper proposes an end-to-end detection model built upon an enhanced YOLOv10 framework.
arXiv Detail & Related papers (2024-08-31T08:43:37Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Fall Detection for Industrial Setups Using YOLOv8 Variants [0.0]
The YOLOv8m model, consisting of 25.9 million parameters and 79.1 GFLOPs, demonstrated a respectable balance between computational efficiency and detection performance.
Although the YOLOv8l and YOLOv8x models presented higher precision and recall, their higher computational demands and model size make them less suitable for resource-constrained environments.
arXiv Detail & Related papers (2024-08-08T17:24:54Z) - Cycle-YOLO: A Efficient and Robust Framework for Pavement Damage Detection [13.221462950649467]
An enhanced pavement damage detection method with CycleGAN and improved YOLOv5 algorithm is presented.
Our algorithm achieved a precision of 0.872, recall of 0.854, and mean average precision@0.5 of 0.882 in detecting three main types of pavement damage: cracks, potholes, and patching.
arXiv Detail & Related papers (2024-05-28T07:27:42Z) - DiffNAS: Bootstrapping Diffusion Models by Prompting for Better
Architectures [63.12993314908957]
We propose a base model search approach, denoted "DiffNAS"
We leverage GPT-4 as a supernet to expedite the search, supplemented with a search memory to enhance the results.
Rigorous experimentation corroborates that our algorithm can augment the search efficiency by 2 times under GPT-based scenarios.
arXiv Detail & Related papers (2023-10-07T09:10:28Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
We propose a bi-level adversarial framework to promote the robustness of detection in the presence of distinct corruptions.
Our scheme remarkably improves 21.96% IOU across a wide array of corruptions and notably promotes 4.97% IOU on the general benchmark.
arXiv Detail & Related papers (2023-09-03T06:35:07Z) - Patch-Level Contrasting without Patch Correspondence for Accurate and
Dense Contrastive Representation Learning [79.43940012723539]
ADCLR is a self-supervised learning framework for learning accurate and dense vision representation.
Our approach achieves new state-of-the-art performance for contrastive methods.
arXiv Detail & Related papers (2023-06-23T07:38:09Z) - DeepSeaNet: Improving Underwater Object Detection using EfficientDet [0.0]
This project involves implementing and evaluating various object detection models on an annotated underwater dataset.
The dataset comprises annotated image sequences of fish, crabs, starfish, and other aquatic animals captured in Limfjorden water with limited visibility.
I compare the results of YOLOv3 (31.10% mean Average Precision (mAP)), YOLOv4 (83.72% mAP), YOLOv5 (97.6%), YOLOv8 (98.20%), EfficientDet (98.56% mAP) and Detectron2 (95.20% mAP) on the same dataset.
arXiv Detail & Related papers (2023-05-26T13:41:35Z) - EdgeYOLO: An Edge-Real-Time Object Detector [69.41688769991482]
This paper proposes an efficient, low-complexity and anchor-free object detector based on the state-of-the-art YOLO framework.
We develop an enhanced data augmentation method to effectively suppress overfitting during training, and design a hybrid random loss function to improve the detection accuracy of small objects.
Our baseline model can reach the accuracy of 50.6% AP50:95 and 69.8% AP50 in MS 2017 dataset, 26.4% AP50:95 and 44.8% AP50 in VisDrone 2019-DET dataset, and it meets real-time requirements (FPS>=30) on edge-computing device Nvidia
arXiv Detail & Related papers (2023-02-15T06:05:14Z) - Underwater target detection based on improved YOLOv7 [7.264267222876267]
This study proposes an improved YOLOv7 network (YOLOv7-AC) for underwater target detection.
The proposed network utilizes an ACmixBlock module to replace the 3x3 convolution block in the E-ELAN structure.
A ResNet-ACmix module is designed to avoid feature information loss and reduce computation.
arXiv Detail & Related papers (2023-02-14T09:50:52Z) - ASFD: Automatic and Scalable Face Detector [129.82350993748258]
We propose a novel Automatic and Scalable Face Detector (ASFD)
ASFD is based on a combination of neural architecture search techniques as well as a new loss design.
Our ASFD-D6 outperforms the prior strong competitors, and our lightweight ASFD-D0 runs at more than 120 FPS with Mobilenet for VGA-resolution images.
arXiv Detail & Related papers (2020-03-25T06:00:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.