Industrial Anomaly Detection and Localization Using Weakly-Supervised Residual Transformers
- URL: http://arxiv.org/abs/2306.03492v6
- Date: Wed, 15 Jan 2025 15:26:03 GMT
- Title: Industrial Anomaly Detection and Localization Using Weakly-Supervised Residual Transformers
- Authors: Hanxi Li, Jingqi Wu, Deyin Liu, Lin Wu, Hao Chen, Mingwen Wang, Chunhua Shen,
- Abstract summary: We introduce a novel framework, Weakly-supervised RESidual Transformer (WeakREST), to achieve high anomaly detection accuracy.<n>We reformulate the pixel-wise anomaly localization task into a block-wise classification problem.<n>We develop a novel ResMixMatch algorithm, capable of handling the interplay between weak labels and residual-based representations.
- Score: 44.344548601242444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in industrial anomaly detection (AD) have demonstrated that incorporating a small number of anomalous samples during training can significantly enhance accuracy. However, this improvement often comes at the cost of extensive annotation efforts, which are impractical for many real-world applications. In this paper, we introduce a novel framework, Weak}ly-supervised RESidual Transformer (WeakREST), designed to achieve high anomaly detection accuracy while minimizing the reliance on manual annotations. First, we reformulate the pixel-wise anomaly localization task into a block-wise classification problem. Second, we introduce a residual-based feature representation called Positional Fast Anomaly Residuals (PosFAR) which captures anomalous patterns more effectively. To leverage this feature, we adapt the Swin Transformer for enhanced anomaly detection and localization. Additionally, we propose a weak annotation approach, utilizing bounding boxes and image tags to define anomalous regions. This approach establishes a semi-supervised learning context that reduces the dependency on precise pixel-level labels. To further improve the learning process, we develop a novel ResMixMatch algorithm, capable of handling the interplay between weak labels and residual-based representations. On the benchmark dataset MVTec-AD, our method achieves an Average Precision (AP) of $83.0\%$, surpassing the previous best result of $82.7\%$ in the unsupervised setting. In the supervised AD setting, WeakREST attains an AP of $87.6\%$, outperforming the previous best of $86.0\%$. Notably, even when using weaker annotations such as bounding boxes, WeakREST exceeds the performance of leading methods relying on pixel-wise supervision, achieving an AP of $87.1\%$ compared to the prior best of $86.0\%$ on MVTec-AD.
Related papers
- Looking for Tiny Defects via Forward-Backward Feature Transfer [12.442574943138794]
We introduce a novel benchmark that evaluates methods on the original, high-resolution image and ground-truth masks.
Our benchmark includes a metric that captures robustness with respect to defect size.
Our proposal features the highest robustness to defect size, runs at the fastest speed and yields state-of-the-art segmentation performance.
arXiv Detail & Related papers (2024-07-04T17:59:26Z) - Don't Miss Out on Novelty: Importance of Novel Features for Deep Anomaly
Detection [64.21963650519312]
Anomaly Detection (AD) is a critical task that involves identifying observations that do not conform to a learned model of normality.
We propose a novel approach to AD using explainability to capture such novel features as unexplained observations in the input space.
Our approach establishes a new state-of-the-art across multiple benchmarks, handling diverse anomaly types.
arXiv Detail & Related papers (2023-10-01T21:24:05Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
We propose a bi-level adversarial framework to promote the robustness of detection in the presence of distinct corruptions.
Our scheme remarkably improves 21.96% IOU across a wide array of corruptions and notably promotes 4.97% IOU on the general benchmark.
arXiv Detail & Related papers (2023-09-03T06:35:07Z) - REB: Reducing Biases in Representation for Industrial Anomaly Detection [16.550844182346314]
We propose Reducing Biases (REB) in representation by considering the domain bias and building a self-supervised learning task for better domain adaption.
We also propose a local-density KNN (LDKNN) to reduce the local density bias in the feature space and obtain effective anomaly detection.
The proposed REB method achieves a promising result of 99.5% Im.AUROC on the widely used MVTec AD, with smaller backbone networks such as Vgg11 and Resnet18.
arXiv Detail & Related papers (2023-08-24T05:32:29Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Align-DETR: Improving DETR with Simple IoU-aware BCE loss [32.13866392998818]
We propose a metric, recall of best-regressed samples, to quantitively evaluate the misalignment problem.
The proposed loss, IA-BCE, guides the training of DETR to build a strong correlation between classification score and localization precision.
To overcome the dramatic decrease in sample quality induced by the sparsity of queries, we introduce a prime sample weighting mechanism.
arXiv Detail & Related papers (2023-04-15T10:24:51Z) - Diffusion Denoising Process for Perceptron Bias in Out-of-distribution
Detection [67.49587673594276]
We introduce a new perceptron bias assumption that suggests discriminator models are more sensitive to certain features of the input, leading to the overconfidence problem.
We demonstrate that the diffusion denoising process (DDP) of DMs serves as a novel form of asymmetric, which is well-suited to enhance the input and mitigate the overconfidence problem.
Our experiments on CIFAR10, CIFAR100, and ImageNet show that our method outperforms SOTA approaches.
arXiv Detail & Related papers (2022-11-21T08:45:08Z) - Unsupervised Domain Adaptive Salient Object Detection Through
Uncertainty-Aware Pseudo-Label Learning [104.00026716576546]
We propose to learn saliency from synthetic but clean labels, which naturally has higher pixel-labeling quality without the effort of manual annotations.
We show that our proposed method outperforms the existing state-of-the-art deep unsupervised SOD methods on several benchmark datasets.
arXiv Detail & Related papers (2022-02-26T16:03:55Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
Weakly-supervised salient object detection (WSOD) aims to develop saliency models using image-level annotations.
We propose a self-calibrated training strategy by explicitly establishing a mutual calibration loop between pseudo labels and network predictions.
We prove that even a much smaller dataset with well-matched annotations can facilitate models to achieve better performance as well as generalizability.
arXiv Detail & Related papers (2021-09-04T02:45:22Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
We propose a unified framework for active learning, that considers both the uncertainty and the robustness of the detector.
Our method is able to pseudo-label the very confident predictions, suppressing a potential distribution drift.
arXiv Detail & Related papers (2021-06-22T16:53:09Z) - Mean-Shifted Contrastive Loss for Anomaly Detection [34.97652735163338]
We propose a new loss function which can overcome failure modes of both center-loss and contrastive-loss methods.
Our improvements yield a new anomaly detection approach, based on $textitMean-Shifted Contrastive Loss$.
Our method achieves state-of-the-art anomaly detection performance on multiple benchmarks including $97.5%$ ROC-AUC.
arXiv Detail & Related papers (2021-06-07T17:58:03Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
Domain adaptation (DA) aims at transferring knowledge from a labeled source domain to an unlabeled target domain.
We present a method of regressive domain adaptation (RegDA) for unsupervised keypoint detection.
Our method brings large improvement by 8% to 11% in terms of PCK on different datasets.
arXiv Detail & Related papers (2021-03-10T16:45:22Z) - Combining GANs and AutoEncoders for Efficient Anomaly Detection [0.0]
CBiGAN is a novel method for anomaly detection in images.
Our model exhibits fairly good modeling power and reconstruction consistency capability.
Experiments show that the proposed method improves the performance of BiGAN formulations by a large margin.
arXiv Detail & Related papers (2020-11-16T17:07:55Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - Uncertainty-Aware Consistency Regularization for Cross-Domain Semantic
Segmentation [63.75774438196315]
Unsupervised domain adaptation (UDA) aims to adapt existing models of the source domain to a new target domain with only unlabeled data.
Most existing methods suffer from noticeable negative transfer resulting from either the error-prone discriminator network or the unreasonable teacher model.
We propose an uncertainty-aware consistency regularization method for cross-domain semantic segmentation.
arXiv Detail & Related papers (2020-04-19T15:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.