論文の概要: LegalSeg: Unlocking the Structure of Indian Legal Judgments Through Rhetorical Role Classification
- arxiv url: http://arxiv.org/abs/2502.05836v1
- Date: Sun, 09 Feb 2025 10:07:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:36:31.932988
- Title: LegalSeg: Unlocking the Structure of Indian Legal Judgments Through Rhetorical Role Classification
- Title(参考訳): 法律セグ: 修辞的役割の分類を通じてインド法定判決の構造を解き放つ
- Authors: Shubham Kumar Nigam, Tanmay Dubey, Govind Sharma, Noel Shallum, Kripabandhu Ghosh, Arnab Bhattacharya,
- Abstract要約: 7000以上の文書と140万の文で構成され、7つの修辞的な役割をラベル付けした、このタスクのための最大の注釈付きデータセットであるLegalSegを紹介します。
以上の結果から,より広義の文脈,構造的関係,逐次的な文情報を含むモデルが,文レベルの特徴にのみ依存するモデルよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 6.549338652948716
- License:
- Abstract: In this paper, we address the task of semantic segmentation of legal documents through rhetorical role classification, with a focus on Indian legal judgments. We introduce LegalSeg, the largest annotated dataset for this task, comprising over 7,000 documents and 1.4 million sentences, labeled with 7 rhetorical roles. To benchmark performance, we evaluate multiple state-of-the-art models, including Hierarchical BiLSTM-CRF, TransformerOverInLegalBERT (ToInLegalBERT), Graph Neural Networks (GNNs), and Role-Aware Transformers, alongside an exploratory RhetoricLLaMA, an instruction-tuned large language model. Our results demonstrate that models incorporating broader context, structural relationships, and sequential sentence information outperform those relying solely on sentence-level features. Additionally, we conducted experiments using surrounding context and predicted or actual labels of neighboring sentences to assess their impact on classification accuracy. Despite these advancements, challenges persist in distinguishing between closely related roles and addressing class imbalance. Our work underscores the potential of advanced techniques for improving legal document understanding and sets a strong foundation for future research in legal NLP.
- Abstract(参考訳): 本稿では,インドの法的判断に焦点をあてた修辞的役割分類を通じて,法的文書のセグメンテーションの課題に対処する。
7000以上の文書と140万の文で構成され、7つの修辞的な役割をラベル付けした、このタスクのための最大の注釈付きデータセットであるLegalSegを紹介します。
本研究では,階層型BiLSTM-CRF,TransformerOverInLegalBERT (ToInLegalBERT), Graph Neural Networks (GNNs), Role-Aware Transformers などの最先端モデルを探索型RhetoricLLaMAとともに評価した。
以上の結果から,より広義の文脈,構造的関係,逐次的な文情報を含むモデルが,文レベルの特徴にのみ依存するモデルよりも優れていることが示された。
さらに,周囲の文脈を用いて実験を行い,近隣の文のラベルやラベルを予測し,それらが分類精度に与える影響を評価する。
これらの進歩にもかかわらず、密接な関係にある役割とクラスの不均衡に対処する際の課題は続いている。
本研究は,法律文書理解向上のための高度技術の可能性を強調し,今後のNLP研究の基盤を固めるものである。
関連論文リスト
- DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Harnessing GPT-3.5-turbo for Rhetorical Role Prediction in Legal Cases [0.16385815610837165]
訴訟の修辞的役割予測タスクにおいて,大規模な事前学習型生成変換器(GPT-3.5-turbo)を問うための一段階適用手法の総合的研究を提案する。
実例数,ラベルの定義,(ラベル付き)テキストコンテキストの提示,およびこのコンテキストに関する特定の質問が,モデルの性能に肯定的な影響を与えることを示す。
論文 参考訳(メタデータ) (2023-10-26T14:19:48Z) - Enhancing Pre-Trained Language Models with Sentence Position Embeddings
for Rhetorical Roles Recognition in Legal Opinions [0.16385815610837165]
法的意見の規模は増え続けており、法的意見の修辞的役割を正確に予測できるモデルを開発することはますます困難になっている。
本稿では,文の位置情報に関する知識によって強化された事前学習言語モデル(PLM)を用いて,修辞的役割を自動的に予測する新しいモデルアーキテクチャを提案する。
LegalEval@SemEval2023コンペティションの注釈付きコーパスに基づいて、我々のアプローチではパラメータが少なく、計算コストが低下することを示した。
論文 参考訳(メタデータ) (2023-10-08T20:33:55Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
本研究では,多種多様なNLPタスクに対して,文内談話特性を評価できるベンチマークを提案する。
ディスコ・ベンチは文学領域における9つの文書レベルのテストセットから構成されており、豊富な談話現象を含んでいる。
また,言語分析のために,対象モデルが談話知識を学習するかどうかを検証できる診断テストスイートを設計する。
論文 参考訳(メタデータ) (2023-07-16T15:18:25Z) - RankCSE: Unsupervised Sentence Representations Learning via Learning to
Rank [54.854714257687334]
本稿では,教師なし文表現学習のための新しい手法であるRangCSEを提案する。
コントラスト学習を伴うランキング一貫性とランキング蒸留を統一された枠組みに組み込む。
セマンティックテキスト類似性(STS)と転送タスク(TR)の両方について、広範な実験が実施されている。
論文 参考訳(メタデータ) (2023-05-26T08:27:07Z) - Rhetorical Role Labeling of Legal Documents using Transformers and Graph
Neural Networks [1.290382979353427]
本稿では,SemEval Task 6の一部として,インドの裁判所判決における修辞的役割のラベル付け作業を行うためのアプローチについて述べる。
論文 参考訳(メタデータ) (2023-05-06T17:04:51Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - PropSegmEnt: A Large-Scale Corpus for Proposition-Level Segmentation and
Entailment Recognition [63.51569687229681]
文中の各命題の文的含意関係を個別に認識する必要性について論じる。
提案するPropSegmEntは45K以上の提案のコーパスであり, 専門家によるアノテートを行う。
我々のデータセット構造は、(1)文書内の文章を命題の集合に分割し、(2)異なるが、トポジカルに整合した文書に対して、各命題の含意関係を分類するタスクに類似している。
論文 参考訳(メタデータ) (2022-12-21T04:03:33Z) - Semantic Segmentation of Legal Documents via Rhetorical Roles [3.285073688021526]
本稿では,法的文書を意味的に一貫性のある単位に分割する修辞的役割 (RR) システムを提案する。
我々は,法的文書をセグメント化するための補助的タスクとして,文書の修辞的役割ラベルシフトを用いたマルチタスク学習に基づくディープラーニングモデルを開発した。
論文 参考訳(メタデータ) (2021-12-03T10:49:19Z) - Multitask Learning for Class-Imbalanced Discourse Classification [74.41900374452472]
マルチタスクアプローチは,現在のベンチマークで7%のマイクロf1コアを改善できることを示す。
また,NLPにおける資源不足問題に対処するための追加手法の比較検討を行った。
論文 参考訳(メタデータ) (2021-01-02T07:13:41Z) - Legal Document Classification: An Application to Law Area Prediction of
Petitions to Public Prosecution Service [6.696983725360808]
本稿では,NLPを用いたテキスト分類手法を提案する。
我々の主な目標は、各分野の法律に請願書を割り当てるプロセスを自動化することです。
最高の結果は、ドメイン固有のコーパスとリカレントニューラルネットワークアーキテクチャに基づいてトレーニングされたWord2Vecの組み合わせで得られる。
論文 参考訳(メタデータ) (2020-10-13T18:05:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。