論文の概要: Enhancing Pre-Trained Language Models with Sentence Position Embeddings
for Rhetorical Roles Recognition in Legal Opinions
- arxiv url: http://arxiv.org/abs/2310.05276v1
- Date: Sun, 8 Oct 2023 20:33:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 08:51:11.690986
- Title: Enhancing Pre-Trained Language Models with Sentence Position Embeddings
for Rhetorical Roles Recognition in Legal Opinions
- Title(参考訳): 法的意見における修辞的役割認識のための文位置埋め込みによる事前学習言語モデルの拡張
- Authors: Anas Belfathi, Nicolas Hernandez and Laura Monceaux
- Abstract要約: 法的意見の規模は増え続けており、法的意見の修辞的役割を正確に予測できるモデルを開発することはますます困難になっている。
本稿では,文の位置情報に関する知識によって強化された事前学習言語モデル(PLM)を用いて,修辞的役割を自動的に予測する新しいモデルアーキテクチャを提案する。
LegalEval@SemEval2023コンペティションの注釈付きコーパスに基づいて、我々のアプローチではパラメータが少なく、計算コストが低下することを示した。
- 参考スコア(独自算出の注目度): 0.16385815610837165
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The legal domain is a vast and complex field that involves a considerable
amount of text analysis, including laws, legal arguments, and legal opinions.
Legal practitioners must analyze these texts to understand legal cases,
research legal precedents, and prepare legal documents. The size of legal
opinions continues to grow, making it increasingly challenging to develop a
model that can accurately predict the rhetorical roles of legal opinions given
their complexity and diversity. In this research paper, we propose a novel
model architecture for automatically predicting rhetorical roles using
pre-trained language models (PLMs) enhanced with knowledge of sentence position
information within a document. Based on an annotated corpus from the
LegalEval@SemEval2023 competition, we demonstrate that our approach requires
fewer parameters, resulting in lower computational costs when compared to
complex architectures employing a hierarchical model in a global-context, yet
it achieves great performance. Moreover, we show that adding more attention to
a hierarchical model based only on BERT in the local-context, along with
incorporating sentence position information, enhances the results.
- Abstract(参考訳): 法領域は、法、法的議論、法的な意見を含む、かなりの量のテキスト分析を含む、巨大で複雑な分野である。
法律実務者は、これらのテキストを分析して、訴訟を理解し、判例を調査し、法的文書を作成する必要がある。
法的意見の規模は増え続けており、その複雑さと多様性から法的な意見の修辞的役割を正確に予測できるモデルを開発することはますます困難になっている。
本稿では,文書内の文位置情報の知識によって強化された事前学習言語モデル(PLM)を用いて,修辞的役割を自動的に予測する新しいモデルアーキテクチャを提案する。
LegalEval@SemEval2023コンペティションの注釈付きコーパスに基づいて、我々のアプローチはパラメータが少なく、結果として、グローバルコンテキストにおける階層モデルを用いた複雑なアーキテクチャと比較して計算コストが低いことが実証された。
さらに,局所文脈におけるBERTのみに基づく階層モデルにさらに注意を加えることで,文の位置情報を組み込んだ結果が向上することを示す。
関連論文リスト
- LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
我々は,米国法域に特化して設計されたマルチタスクモデルであるLawLLM(Law Large Language Model)を紹介する。
類似症例検索(SCR)、PCR(Precedent Case Recommendation)、LJP(Lawal Judgment Prediction)においてLawLLMが優れている
そこで本研究では,各タスクに対して,生の法定データをトレーニング可能な形式に変換する,カスタマイズされたデータ前処理手法を提案する。
論文 参考訳(メタデータ) (2024-07-27T21:51:30Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Lawは、中国法に関する様々な法的クエリに対処するための特殊なLLMである。
われわれは、中国法域に100万以上のクエリを含むデータセットを慎重に構築する。
InternLM-LawはLawBench上で最高の平均性能を達成し、20サブタスク中13サブタスクでGPT-4を含む最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-21T06:19:03Z) - Empowering Prior to Court Legal Analysis: A Transparent and Accessible Dataset for Defensive Statement Classification and Interpretation [5.646219481667151]
本稿では,裁判所の手続きに先立って,警察の面接中に作成された文の分類に適した新しいデータセットを提案する。
本稿では,直感的文と真偽を区別し,最先端のパフォーマンスを実現するための微調整DistilBERTモデルを提案する。
我々はまた、法律専門家と非専門主義者の両方がシステムと対話し、利益を得ることを可能にするXAIインターフェースも提示する。
論文 参考訳(メタデータ) (2024-05-17T11:22:27Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval [18.058942674792604]
本稿では,訴訟の関連判断に適した新規な数ショットワークフローを提案する。
LLMと人的専門家の関連判断を比較することで,信頼性の高い関連判断が得られたことを実証的に示す。
論文 参考訳(メタデータ) (2024-03-27T09:46:56Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Corpus for Automatic Structuring of Legal Documents [1.8025738207124173]
本稿では,トピックとコヒーレントな部分に分けられる法的判断文書のコーパスを英語で紹介する。
注釈付きコーパスに基づく法文書における修辞的役割を自動的に予測するベースラインモデルを開発した。
要約および法的判断予測のタスクにおける性能向上のための修辞的役割の応用について述べる。
論文 参考訳(メタデータ) (2022-01-31T11:12:44Z) - Semantic Segmentation of Legal Documents via Rhetorical Roles [3.285073688021526]
本稿では,法的文書を意味的に一貫性のある単位に分割する修辞的役割 (RR) システムを提案する。
我々は,法的文書をセグメント化するための補助的タスクとして,文書の修辞的役割ラベルシフトを用いたマルチタスク学習に基づくディープラーニングモデルを開発した。
論文 参考訳(メタデータ) (2021-12-03T10:49:19Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。