NeuralPrefix: A Zero-shot Sensory Data Imputation Plugin
- URL: http://arxiv.org/abs/2502.05883v1
- Date: Sun, 09 Feb 2025 12:47:55 GMT
- Title: NeuralPrefix: A Zero-shot Sensory Data Imputation Plugin
- Authors: Abdelwahed Khamis, Sara Khalifa,
- Abstract summary: We formalise the concept of zero-shot imputation and propose a novel approach that enables the adaptation of pre-trained models to handle data intermittency.
This framework, named NeuralPrefix, is a generative neural component that precedes a task model during inference.
We conduct a comprehensive evaluation of NeuralPrefix on multiple sensory datasets, demonstrating its effectiveness across various domains.
- Score: 1.8416014644193066
- License:
- Abstract: Real-world sensing challenges such as sensor failures, communication issues, and power constraints lead to data intermittency. An issue that is known to undermine the traditional classification task that assumes a continuous data stream. Previous works addressed this issue by designing bespoke solutions (i.e. task-specific and/or modality-specific imputation). These approaches, while effective for their intended purposes, had limitations in their applicability across different tasks and sensor modalities. This raises an important question: Can we build a task-agnostic imputation pipeline that is transferable to new sensors without requiring additional training? In this work, we formalise the concept of zero-shot imputation and propose a novel approach that enables the adaptation of pre-trained models to handle data intermittency. This framework, named NeuralPrefix, is a generative neural component that precedes a task model during inference, filling in gaps caused by data intermittency. NeuralPrefix is built as a continuous dynamical system, where its internal state can be estimated at any point in time by solving an Ordinary Differential Equation (ODE). This approach allows for a more versatile and adaptable imputation method, overcoming the limitations of task-specific and modality-specific solutions. We conduct a comprehensive evaluation of NeuralPrefix on multiple sensory datasets, demonstrating its effectiveness across various domains. When tested on intermittent data with a high 50% missing data rate, NeuralPreifx accurately recovers all the missing samples, achieving SSIM score between 0.93-0.96. Zero-shot evaluations show that NeuralPrefix generalises well to unseen datasets, even when the measurements come from a different modality.
Related papers
- CleanSurvival: Automated data preprocessing for time-to-event models using reinforcement learning [0.0]
Data preprocessing is a critical yet frequently neglected aspect of machine learning.
CleanSurvival is a reinforcement-learning-based solution for optimizing preprocessing pipelines.
It can handle continuous and categorical variables, using Q-learning to select which combination of data imputation, outlier detection and feature extraction techniques achieves optimal performance.
arXiv Detail & Related papers (2025-02-06T10:33:37Z) - Neural Conformal Control for Time Series Forecasting [54.96087475179419]
We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments.
Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders.
We empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.
arXiv Detail & Related papers (2024-12-24T03:56:25Z) - NIDS Neural Networks Using Sliding Time Window Data Processing with Trainable Activations and its Generalization Capability [0.0]
This paper presents neural networks for network intrusion detection systems (NIDS) that operate on flow data preprocessed with a time window.
It requires only eleven features which do not rely on deep packet inspection and can be found in most NIDS datasets and easily obtained from conventional flow collectors.
The reported training accuracy exceeds 99% for the proposed method with as little as twenty neural network input features.
arXiv Detail & Related papers (2024-10-24T11:36:19Z) - Functional data learning using convolutional neural networks [0.0]
We show how convolutional neural networks can be used in regression and classification learning problems.
We use a specific but typical architecture of a convolutional neural network to perform all the regression exercises.
The method, although simple, shows high accuracy and is promising for future use in engineering and medical applications.
arXiv Detail & Related papers (2023-10-05T04:46:52Z) - On the ISS Property of the Gradient Flow for Single Hidden-Layer Neural
Networks with Linear Activations [0.0]
We investigate the effects of overfitting on the robustness of gradient-descent training when subject to uncertainty on the gradient estimation.
We show that the general overparametrized formulation introduces a set of spurious equilibria which lay outside the set where the loss function is minimized.
arXiv Detail & Related papers (2023-05-17T02:26:34Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
We argue that traditional methods have rarely made use of both times-series dynamics of the data as well as the relatedness of the features from different sensors.
We propose a model, termed as DynImp, to handle different time point's missingness with nearest neighbors along feature axis.
We show that the method can exploit the multi-modality features from related sensors and also learn from history time-series dynamics to reconstruct the data under extreme missingness.
arXiv Detail & Related papers (2022-09-26T21:59:14Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.