Functional data learning using convolutional neural networks
- URL: http://arxiv.org/abs/2310.03773v1
- Date: Thu, 5 Oct 2023 04:46:52 GMT
- Title: Functional data learning using convolutional neural networks
- Authors: Jose Galarza and Tamer Oraby
- Abstract summary: We show how convolutional neural networks can be used in regression and classification learning problems.
We use a specific but typical architecture of a convolutional neural network to perform all the regression exercises.
The method, although simple, shows high accuracy and is promising for future use in engineering and medical applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we show how convolutional neural networks (CNN) can be used in
regression and classification learning problems of noisy and non-noisy
functional data. The main idea is to transform the functional data into a 28 by
28 image. We use a specific but typical architecture of a convolutional neural
network to perform all the regression exercises of parameter estimation and
functional form classification. First, we use some functional case studies of
functional data with and without random noise to showcase the strength of the
new method. In particular, we use it to estimate exponential growth and decay
rates, the bandwidths of sine and cosine functions, and the magnitudes and
widths of curve peaks. We also use it to classify the monotonicity and
curvatures of functional data, algebraic versus exponential growth, and the
number of peaks of functional data. Second, we apply the same convolutional
neural networks to Lyapunov exponent estimation in noisy and non-noisy chaotic
data, in estimating rates of disease transmission from epidemic curves, and in
detecting the similarity of drug dissolution profiles. Finally, we apply the
method to real-life data to detect Parkinson's disease patients in a
classification problem. The method, although simple, shows high accuracy and is
promising for future use in engineering and medical applications.
Related papers
- Nonlinear functional regression by functional deep neural network with
kernel embedding [20.306390874610635]
We propose a functional deep neural network with an efficient and fully data-dependent dimension reduction method.
The architecture of our functional net consists of a kernel embedding step, a projection step, and a deep ReLU neural network for the prediction.
The utilization of smooth kernel embedding enables our functional net to be discretization invariant, efficient, and robust to noisy observations.
arXiv Detail & Related papers (2024-01-05T16:43:39Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Provable Data Subset Selection For Efficient Neural Network Training [73.34254513162898]
We introduce the first algorithm to construct coresets for emphRBFNNs, i.e., small weighted subsets that approximate the loss of the input data on any radial basis function network.
We then perform empirical evaluations on function approximation and dataset subset selection on popular network architectures and data sets.
arXiv Detail & Related papers (2023-03-09T10:08:34Z) - Functional Neural Networks: Shift invariant models for functional data
with applications to EEG classification [0.0]
We introduce a new class of neural networks that are shift invariant and preserve smoothness of the data: functional neural networks (FNNs)
For this, we use methods from functional data analysis (FDA) to extend multi-layer perceptrons and convolutional neural networks to functional data.
We show that the models outperform a benchmark model from FDA in terms of accuracy and successfully use FNNs to classify electroencephalography (EEG) data.
arXiv Detail & Related papers (2023-01-14T09:41:21Z) - NeuralEF: Deconstructing Kernels by Deep Neural Networks [47.54733625351363]
Traditional nonparametric solutions based on the Nystr"om formula suffer from scalability issues.
Recent work has resorted to a parametric approach, i.e., training neural networks to approximate the eigenfunctions.
We show that these problems can be fixed by using a new series of objective functions that generalizes to space of supervised and unsupervised learning problems.
arXiv Detail & Related papers (2022-04-30T05:31:07Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
We propose a framework for learning continuous representations from a sample of multidimensional functional data.
We show that the resulting estimation problem can be solved efficiently by the tensor decomposition.
We conclude with a real data application in neuroimaging.
arXiv Detail & Related papers (2021-07-30T16:02:15Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - Data-Driven Learning of Feedforward Neural Networks with Different
Activation Functions [0.0]
This work contributes to the development of a new data-driven method (D-DM) of feedforward neural networks (FNNs) learning.
arXiv Detail & Related papers (2021-07-04T18:20:27Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
An object called structural causal model (SCM) represents a collection of mechanisms and sources of random variation of the system under investigation.
In this paper, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020) still holds for neural models.
We introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences.
arXiv Detail & Related papers (2021-07-02T01:55:18Z) - Estimating Multiplicative Relations in Neural Networks [0.0]
We will use properties of logarithmic functions to propose a pair of activation functions which can translate products into linear expression and learn using backpropagation.
We will try to generalize this approach for some complex arithmetic functions and test the accuracy on a disjoint distribution with the training set.
arXiv Detail & Related papers (2020-10-28T14:28:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.