Generating 3D Binding Molecules Using Shape-Conditioned Diffusion Models with Guidance
- URL: http://arxiv.org/abs/2502.06027v1
- Date: Sun, 09 Feb 2025 20:50:39 GMT
- Title: Generating 3D Binding Molecules Using Shape-Conditioned Diffusion Models with Guidance
- Authors: Ziqi Chen, Bo Peng, Tianhua Zhai, Daniel Adu-Ampratwum, Xia Ning,
- Abstract summary: Drug development is a critical but notoriously resource and time-consuming process.
We develop a novel generative artificial intelligence (genAI) method DiffSMol to generate 3D binding molecules.
We show that DiffSMol outperforms the state-of-the-art methods on benchmark datasets.
- Score: 4.928541769033148
- License:
- Abstract: Drug development is a critical but notoriously resource- and time-consuming process. In this manuscript, we develop a novel generative artificial intelligence (genAI) method DiffSMol to facilitate drug development. DiffSmol generates 3D binding molecules based on the shapes of known ligands. DiffSMol encapsulates geometric details of ligand shapes within pre-trained, expressive shape embeddings and then generates new binding molecules through a diffusion model. DiffSMol further modifies the generated 3D structures iteratively via shape guidance to better resemble the ligand shapes. It also tailors the generated molecules toward optimal binding affinities under the guidance of protein pockets. Here, we show that DiffSMol outperforms the state-of-the-art methods on benchmark datasets. When generating binding molecules resembling ligand shapes, DiffSMol with shape guidance achieves a success rate 61.4%, substantially outperforming the best baseline (11.2%), meanwhile producing molecules with novel molecular graph structures. DiffSMol with pocket guidance also outperforms the best baseline in binding affinities by 13.2%, and even by 17.7% when combined with shape guidance. Case studies for two critical drug targets demonstrate very favorable physicochemical and pharmacokinetic properties of the generated molecules, thus, the potential of DiffSMol in developing promising drug candidates.
Related papers
- NExT-Mol: 3D Diffusion Meets 1D Language Modeling for 3D Molecule Generation [72.22099363325145]
We propose a foundation model -- NExT-Mol: 3D Diffusion Meets 1D Language Modeling for 3D Molecule Generation.
NExT-Mol uses an extensively pretrained molecule LM for 1D molecule generation, and subsequently predicts the generated molecule's 3D conformers.
We enhance NExT-Mol's performance by scaling up the LM's model size, refining the diffusion neural architecture, and applying 1D to 3D transfer learning.
arXiv Detail & Related papers (2025-02-18T08:40:13Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - TAGMol: Target-Aware Gradient-guided Molecule Generation [19.977071499171903]
3D generative models have shown significant promise in structure-based drug design (SBDD)
We decouple the problem into molecular generation and property prediction.
The latter synergistically guides the diffusion sampling process, facilitating guided diffusion and resulting in the creation of meaningful molecules with the desired properties.
We call this guided molecular generation process as TAGMol.
arXiv Detail & Related papers (2024-06-03T14:43:54Z) - Medication Recommendation via Dual Molecular Modalities and Multi-Step Enhancement [6.927266015351967]
Existing works based on molecular knowledge neglect the 3D geometric structure of molecules and fail to learn the high-dimensional information of medications.
We propose a bimodal molecular recommendation framework named BiMoRec, which introduces 3D molecular structures to obtain atomic 3D coordinates and edge indices.
arXiv Detail & Related papers (2024-05-30T07:13:08Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
We propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points.
In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties.
arXiv Detail & Related papers (2023-05-30T06:41:20Z) - An Equivariant Generative Framework for Molecular Graph-Structure
Co-Design [54.92529253182004]
We present MolCode, a machine learning-based generative framework for underlineMolecular graph-structure underlineCo-design.
In MolCode, 3D geometric information empowers the molecular 2D graph generation, which in turn helps guide the prediction of molecular 3D structure.
Our investigation reveals that the 2D topology and 3D geometry contain intrinsically complementary information in molecule design.
arXiv Detail & Related papers (2023-04-12T13:34:22Z) - Widely Used and Fast De Novo Drug Design by a Protein Sequence-Based
Reinforcement Learning Model [4.815696666006742]
Structure-based de novo method can overcome the data scarcity of active by incorporating drug-target interaction into deep generative architectures.
Here, we demonstrate a widely used and fast protein sequence-based reinforcement learning model for drug discovery.
As a proof of concept, the RL model was utilized to design molecules for four targets.
arXiv Detail & Related papers (2022-08-14T10:41:52Z) - Structure-aware generation of drug-like molecules [2.449909275410288]
Deep generative methods have shown promise in proposing novel molecules from scratch (de-novo design)
We propose a novel supervised model that generates molecular graphs jointly with 3D pose in a discretised molecular space.
We evaluate our model using a docking benchmark and find that guided generation improves predicted binding affinities by 8% and drug-likeness scores by 10% over the baseline.
arXiv Detail & Related papers (2021-11-07T15:19:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.