Foundation Model of Electronic Medical Records for Adaptive Risk Estimation
- URL: http://arxiv.org/abs/2502.06124v1
- Date: Mon, 10 Feb 2025 03:22:39 GMT
- Title: Foundation Model of Electronic Medical Records for Adaptive Risk Estimation
- Authors: Pawel Renc, Michal K. Grzeszczyk, Nassim Oufattole, Deirdre Goode, Yugang Jia, Szymon Bieganski, Matthew B. A. McDermott, Jaroslaw Was, Anthony E. Samir, Jonathan W. Cunningham, David W. Bates, Arkadiusz Sitek,
- Abstract summary: Enhanced Transformer for Health Simulation (ETHOS) tokenizes patient timelines (PHTs) from EHRs.
The Risk Estimation System (ARES) employs ETHOS to compute dynamic and personalized risk probabilities for clinician-defined critical events.
ARES incorporates a personalized explainability module that identifies key clinical factors influencing risk estimates for individual patients.
- Score: 6.248030496243407
- License:
- Abstract: We developed the Enhanced Transformer for Health Outcome Simulation (ETHOS), an AI model that tokenizes patient health timelines (PHTs) from EHRs. ETHOS predicts future PHTs using transformer-based architectures. The Adaptive Risk Estimation System (ARES) employs ETHOS to compute dynamic and personalized risk probabilities for clinician-defined critical events. ARES incorporates a personalized explainability module that identifies key clinical factors influencing risk estimates for individual patients. ARES was evaluated on the MIMIC-IV v2.2 dataset in emergency department (ED) settings, benchmarking its performance against traditional early warning systems and machine learning models. We processed 299,721 unique patients from MIMIC-IV into 285,622 PHTs, with 60% including hospital admissions. The dataset contained over 357 million tokens. ETHOS outperformed benchmark models in predicting hospital admissions, ICU admissions, and prolonged hospital stays, achieving superior AUC scores. ETHOS-based risk estimates demonstrated robustness across demographic subgroups with strong model reliability, confirmed via calibration curves. The personalized explainability module provides insights into patient-specific factors contributing to risk. ARES, powered by ETHOS, advances predictive healthcare AI by providing dynamic, real-time, and personalized risk estimation with patient-specific explainability to enhance clinician trust. Its adaptability and superior accuracy position it as a transformative tool for clinical decision-making, potentially improving patient outcomes and resource allocation in emergency and inpatient settings. We release the full code at github.com/ipolharvard/ethos-ares to facilitate future research.
Related papers
- Explainable AI for Classifying UTI Risk Groups Using a Real-World Linked EHR and Pathology Lab Dataset [0.47517735516852333]
We leverage a linked EHR dataset to characterize urinary tract infections (UTIs)
We introduce a UTI risk estimation framework informed by clinical expertise to estimate UTI risk across individual patient timelines.
Our findings reveal differences in clinical and demographic predictors across risk groups.
arXiv Detail & Related papers (2024-11-26T18:10:51Z) - DeLLiriuM: A large language model for delirium prediction in the ICU using structured EHR [1.4699314771635081]
Delirium is an acute confusional state that has been shown to affect up to 31% of patients in the intensive care unit (ICU)
We develop and validate DeLLiriuM on ICU admissions from 104,303 patients pertaining to 195 hospitals across three large databases.
arXiv Detail & Related papers (2024-10-22T18:56:31Z) - AIPatient: Simulating Patients with EHRs and LLM Powered Agentic Workflow [33.8495939261319]
We develop an advanced simulated patient system with AIPatient Knowledge Graph (AIPatient KG) as the input and Reasoning Retrieval-Augmented Generation (Reasoning RAG) as the generation backbone.
Reasoning RAG leverages six LLM powered agents spanning tasks including retrieval, KG query generation, abstraction, checker, rewrite, and summarization.
Our system also presents high readability (median Flesch Reading Ease 77.23; median Flesch Kincaid Grade 5.6), robustness (ANOVA F-value 0.6126, p>0.1), and stability (ANOVA F-value 0.782, p>0.1)
arXiv Detail & Related papers (2024-09-27T17:17:15Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Generating Synthetic Mixed-type Longitudinal Electronic Health Records
for Artificial Intelligent Applications [9.374416143268892]
generative adversarial network (GAN) entitled EHR-M-GAN which synthesizes textitmixed-type timeseries EHR data.
We have validated EHR-M-GAN on three publicly-available intensive care unit databases with records from a total of 141,488 unique patients.
arXiv Detail & Related papers (2021-12-22T17:17:34Z) - Literature-Augmented Clinical Outcome Prediction [10.46990394710927]
We introduce techniques to help bridge this gap between EBM and AI-based clinical models.
We propose a novel system that automatically retrieves patient-specific literature based on intensive care (ICU) patient information.
Our model is able to substantially boost predictive accuracy on three challenging tasks in comparison to strong recent baselines.
arXiv Detail & Related papers (2021-11-16T11:19:02Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.