The Value of Information in Human-AI Decision-making
- URL: http://arxiv.org/abs/2502.06152v1
- Date: Mon, 10 Feb 2025 04:50:42 GMT
- Title: The Value of Information in Human-AI Decision-making
- Authors: Ziyang Guo, Yifan Wu, Jason Hartline, Jessica Hullman,
- Abstract summary: We provide a decision-theoretic framework for characterizing the value of information.
We propose a novel information-based instance-level explanation technique.
- Score: 23.353778024330165
- License:
- Abstract: Humans and AIs are often paired on decision tasks with the expectation of achieving complementary performance, where the combination of human and AI outperforms either one alone. However, how to improve performance of a human-AI team is often not clear without knowing more about what particular information and strategies each agent employs. We provide a decision-theoretic framework for characterizing the value of information -- and consequently, opportunities for agents to better exploit available information--in AI-assisted decision workflow. We demonstrate the use of the framework for model selection, empirical evaluation of human-AI performance, and explanation design. We propose a novel information-based instance-level explanation technique that adapts a conventional saliency-based explanation to explain information value in decision making.
Related papers
- Unexploited Information Value in Human-AI Collaboration [23.353778024330165]
How to improve performance of a human-AI team is often not clear without knowing what particular information and strategies each agent employs.
We propose a model based in statistical decision theory to analyze human-AI collaboration.
arXiv Detail & Related papers (2024-11-03T01:34:45Z) - Utilizing Human Behavior Modeling to Manipulate Explanations in AI-Assisted Decision Making: The Good, the Bad, and the Scary [19.884253335528317]
Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process.
To fully unlock the potential of AI-assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions.
Providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice.
arXiv Detail & Related papers (2024-11-02T18:33:28Z) - Study on the Helpfulness of Explainable Artificial Intelligence [0.0]
Legal, business, and ethical requirements motivate using effective XAI.
We propose to evaluate XAI methods via the user's ability to successfully perform a proxy task.
In other words, we address the helpfulness of XAI for human decision-making.
arXiv Detail & Related papers (2024-10-14T14:03:52Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole.
We propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making.
Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates.
arXiv Detail & Related papers (2024-03-25T14:34:06Z) - Beyond Recommender: An Exploratory Study of the Effects of Different AI
Roles in AI-Assisted Decision Making [48.179458030691286]
We examine three AI roles: Recommender, Analyzer, and Devil's Advocate.
Our results show each role's distinct strengths and limitations in task performance, reliance appropriateness, and user experience.
These insights offer valuable implications for designing AI assistants with adaptive functional roles according to different situations.
arXiv Detail & Related papers (2024-03-04T07:32:28Z) - Human Delegation Behavior in Human-AI Collaboration: The Effect of Contextual Information [7.475784495279183]
One promising approach to leverage existing complementary capabilities is allowing humans to delegate individual instances of decision tasks to AI.
We conduct a behavioral study to explore the effects of providing contextual information to support this delegation decision.
Our findings reveal that access to contextual information significantly improves human-AI team performance in delegation settings.
arXiv Detail & Related papers (2024-01-09T18:59:47Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - How much informative is your XAI? A decision-making assessment task to
objectively measure the goodness of explanations [53.01494092422942]
The number and complexity of personalised and user-centred approaches to XAI have rapidly grown in recent years.
It emerged that user-centred approaches to XAI positively affect the interaction between users and systems.
We propose an assessment task to objectively and quantitatively measure the goodness of XAI systems.
arXiv Detail & Related papers (2023-12-07T15:49:39Z) - From DDMs to DNNs: Using process data and models of decision-making to
improve human-AI interactions [1.1510009152620668]
We argue that artificial intelligence (AI) research would benefit from a stronger focus on insights about how decisions emerge over time.
First, we introduce a highly established computational framework that assumes decisions to emerge from the noisy accumulation of evidence.
Next, we discuss to what extent current approaches in multi-agent AI do or do not incorporate process data and models of decision making.
arXiv Detail & Related papers (2023-08-29T11:27:22Z) - Adaptive cognitive fit: Artificial intelligence augmented management of
information facets and representations [62.997667081978825]
Explosive growth in big data technologies and artificial intelligence [AI] applications have led to increasing pervasiveness of information facets.
Information facets, such as equivocality and veracity, can dominate and significantly influence human perceptions of information.
We suggest that artificially intelligent technologies that can adapt information representations to overcome cognitive limitations are necessary.
arXiv Detail & Related papers (2022-04-25T02:47:25Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.