Adversarial Transform Particle Filters
- URL: http://arxiv.org/abs/2502.06165v1
- Date: Mon, 10 Feb 2025 05:31:35 GMT
- Title: Adversarial Transform Particle Filters
- Authors: Chengxin Gong, Wei Lin, Cheng Zhang,
- Abstract summary: The particle filter (PF) and the ensemble Kalman filter (EnKF) are widely used for approximate inference in state-space models.
We propose the Adversarial Transform Particle Filter (ATPF), a novel filtering framework that combines the strengths of the PF and the EnKF through adversarial learning.
- Score: 11.330617592263744
- License:
- Abstract: The particle filter (PF) and the ensemble Kalman filter (EnKF) are widely used for approximate inference in state-space models. From a Bayesian perspective, these algorithms represent the prior by an ensemble of particles and update it to the posterior with new observations over time. However, the PF often suffers from weight degeneracy in high-dimensional settings, whereas the EnKF relies on linear Gaussian assumptions that can introduce significant approximation errors. In this paper, we propose the Adversarial Transform Particle Filter (ATPF), a novel filtering framework that combines the strengths of the PF and the EnKF through adversarial learning. Specifically, importance sampling is used to ensure statistical consistency as in the PF, while adversarially learned transformations, such as neural networks, allow accurate posterior matching for nonlinear and non-Gaussian systems. In addition, we incorporate kernel methods to ease optimization and leverage regularization techniques based on optimal transport for better statistical properties and numerical stability. We provide theoretical guarantees, including generalization bounds for both the analysis and forecast steps of ATPF. Extensive experiments across various nonlinear and non-Gaussian scenarios demonstrate the effectiveness and practical advantages of our method.
Related papers
- Filtered Markovian Projection: Dimensionality Reduction in Filtering for Stochastic Reaction Networks [0.9599644507730105]
A typical challenge in practical problems modeled by reaction networks (SRNs) is that only a few state variables can be dynamically observed.
We propose to use a dimensionality reduction technique based on the Markovian projection (MP), initially introduced for forward problems.
The novel method combines a particle filter with reduced variance and solving the filtering equations in a low-dimensional space.
arXiv Detail & Related papers (2025-02-11T19:45:40Z) - Variance-Reducing Couplings for Random Features [57.73648780299374]
Random features (RFs) are a popular technique to scale up kernel methods in machine learning.
We find couplings to improve RFs defined on both Euclidean and discrete input spaces.
We reach surprising conclusions about the benefits and limitations of variance reduction as a paradigm.
arXiv Detail & Related papers (2024-05-26T12:25:09Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Nonlinear Filtering with Brenier Optimal Transport Maps [4.745059103971596]
This paper is concerned with the problem of nonlinear filtering, i.e., computing the conditional distribution of the state of a dynamical system.
Conventional sequential importance resampling (SIR) particle filters suffer from fundamental limitations, in scenarios involving degenerate likelihoods or high-dimensional states.
In this paper, we explore an alternative method, which is based on estimating the Brenier optimal transport (OT) map from the current prior distribution of the state to the posterior distribution at the next time step.
arXiv Detail & Related papers (2023-10-21T01:34:30Z) - Exact nonlinear state estimation [0.0]
The majority of data assimilation methods in the geosciences are based on Gaussian assumptions.
Non-parametric, particle-based DA algorithms have superior accuracy, but their application to high-dimensional models still poses operational challenges.
This article introduces a new nonlinear estimation theory which attempts to bridge the existing gap in DA methodology.
arXiv Detail & Related papers (2023-10-17T03:44:29Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
We propose a computational framework to approximate Doob's $h$-transforms.
The proposed approach can be orders of magnitude more efficient than state-of-the-art particle filters.
arXiv Detail & Related papers (2022-06-07T15:03:05Z) - Deep Learning for the Benes Filter [91.3755431537592]
We present a new numerical method based on the mesh-free neural network representation of the density of the solution of the Benes model.
We discuss the role of nonlinearity in the filtering model equations for the choice of the domain of the neural network.
arXiv Detail & Related papers (2022-03-09T14:08:38Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Differentiable Particle Filtering via Entropy-Regularized Optimal
Transport [19.556744028461004]
We introduce a principled differentiable particle filter and provide convergence results.
By leveraging optimal transport ideas, we introduce a principled differentiable particle filter and provide convergence results.
arXiv Detail & Related papers (2021-02-15T21:05:33Z) - Innovative And Additive Outlier Robust Kalman Filtering With A Robust
Particle Filter [68.8204255655161]
We propose CE-BASS, a particle mixture Kalman filter which is robust to both innovative and additive outliers, and able to fully capture multi-modality in the distribution of the hidden state.
Furthermore, the particle sampling approach re-samples past states, which enables CE-BASS to handle innovative outliers which are not immediately visible in the observations, such as trend changes.
arXiv Detail & Related papers (2020-07-07T07:11:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.