論文の概要: Position: Continual Learning Benefits from An Evolving Population over An Unified Model
- arxiv url: http://arxiv.org/abs/2502.06210v1
- Date: Mon, 10 Feb 2025 07:21:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:30:36.158273
- Title: Position: Continual Learning Benefits from An Evolving Population over An Unified Model
- Title(参考訳): 位置: 統一モデル上での進化する人口からの継続的な学習効果
- Authors: Aojun Lu, Junchao Ke, Chunhui Ding, Jiahao Fan, Yanan Sun,
- Abstract要約: 本研究では,新しいPCLフレームワークを提案する。
PCLは、ニューラルネットワークアーキテクチャの集団を維持し、進化させることで、継続的学習をアーキテクチャレベルまで拡張する。
PCLは、統一モデルを用いた最先端のリハーサルのないCLメソッドよりも優れている。
- 参考スコア(独自算出の注目度): 4.348086726793516
- License:
- Abstract: Deep neural networks have demonstrated remarkable success in machine learning; however, they remain fundamentally ill-suited for Continual Learning (CL). Recent research has increasingly focused on achieving CL without the need for rehearsal. Among these, parameter isolation-based methods have proven particularly effective in enhancing CL by optimizing model weights for each incremental task. Despite their success, they fall short in optimizing architectures tailored to distinct incremental tasks. To address this limitation, updating a group of models with different architectures offers a promising alternative to the traditional CL paradigm that relies on a single unified model. Building on this insight, this study introduces a novel Population-based Continual Learning (PCL) framework. PCL extends CL to the architectural level by maintaining and evolving a population of neural network architectures, which are continually refined for the current task through NAS. Importantly, the well-evolved population for the current incremental task is naturally inherited by the subsequent one, thereby facilitating forward transfer, a crucial objective in CL. Throughout the CL process, the population evolves, yielding task-specific architectures that collectively form a robust CL system. Experimental results demonstrate that PCL outperforms state-of-the-art rehearsal-free CL methods that employs a unified model, highlighting its potential as a new paradigm for CL.
- Abstract(参考訳): 深層ニューラルネットワークは機械学習において顕著な成功を収めてきたが、継続学習(CL)には相変わらず適していない。
近年の研究では、リハーサルを必要とせずにCLを達成することに注力している。
これらのうち、パラメータ分離に基づく手法は、各インクリメンタルタスクのモデル重みを最適化することにより、CLの強化に特に有効であることが証明されている。
彼らの成功にもかかわらず、異なる漸進的なタスクに適したアーキテクチャの最適化には不足している。
この制限に対処するため、異なるアーキテクチャでモデル群を更新することは、単一の統一モデルに依存する従来のCLパラダイムに代わる有望な代替手段を提供する。
そこで本研究では,PCL(Population-based Continual Learning)フレームワークを提案する。
PCLはCLをアーキテクチャレベルまで拡張し、NASを通じて現在のタスクのために継続的に洗練されるニューラルネットワークアーキテクチャの集団を維持し、進化させます。
重要なことは、現在の漸進的タスクの発達した個体群は、後続のタスクによって自然に継承され、CLの重要な目的である転送を促進することである。
CLプロセスを通して、人口は進化し、集合的に堅牢なCLシステムを形成するタスク固有のアーキテクチャを生み出す。
実験の結果、PCLは統一モデルを用いた最先端のリハーサルのないCLメソッドよりも優れており、CLの新しいパラダイムとしての可能性を強調している。
関連論文リスト
- Continual Task Learning through Adaptive Policy Self-Composition [54.95680427960524]
CompoFormerは構造ベースの連続トランスフォーマーモデルであり、メタポリシックネットワークを介して、以前のポリシーを適応的に構成する。
実験の結果,CompoFormerは従来の継続学習法(CL)よりも優れており,特にタスクシーケンスが長いことが判明した。
論文 参考訳(メタデータ) (2024-11-18T08:20:21Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
現実世界のアプリケーションにおける機械学習モデルの重要な機能は、新しいタスクを継続的に学習する能力である。
継続的な学習設定では、モデルは以前の知識を保持することで新しいタスクの学習のバランスをとるのに苦労することが多い。
複数の先行推定の正則化効果を統合する新たな学習目標を提案する。
論文 参考訳(メタデータ) (2024-10-10T10:58:41Z) - ICL-TSVD: Bridging Theory and Practice in Continual Learning with Pre-trained Models [103.45785408116146]
連続学習(CL)は、連続的に提示される複数のタスクを解決できるモデルを訓練することを目的としている。
最近のCLアプローチは、ダウンストリームタスクをうまく一般化する大規模な事前学習モデルを活用することで、強力なパフォーマンスを実現している。
しかし、これらの手法には理論的保証がなく、予期せぬ失敗をしがちである。
私たちは、経験的に強いアプローチを原則化されたフレームワークに統合することで、このギャップを埋めます。
論文 参考訳(メタデータ) (2024-10-01T12:58:37Z) - Theory on Mixture-of-Experts in Continual Learning [72.42497633220547]
継続学習(CL)は、時間とともに現れる新しいタスクに適応する能力のため、大きな注目を集めている。
モデルが新しいタスクに適応するにつれて、(古いタスクの)破滅的な忘れがCLの大きな問題として認識されるようになった。
MoEモデルは近年,ゲーティングネットワークを用いることで,CLの破滅的忘れを効果的に軽減することが示されている。
論文 参考訳(メタデータ) (2024-06-24T08:29:58Z) - Recent Advances of Foundation Language Models-based Continual Learning: A Survey [31.171203978742447]
基礎言語モデル (LM) は自然言語処理 (NLP) とコンピュータビジョン (CV) の分野において重要な成果を上げている。
しかし、破滅的な忘れ物のため、人間のような継続的学習をエミュレートすることはできない。
従来の知識を忘れずに新しいタスクに適応できるように、様々な連続学習(CL)ベースの方法論が開発されている。
論文 参考訳(メタデータ) (2024-05-28T23:32:46Z) - Realistic Continual Learning Approach using Pre-trained Models [1.2582887633807602]
本稿では,タスク間のクラス分布がランダムな新しいCLパラダイムであるRealistic Continual Learning(RealCL)を紹介する。
CLARE(Continual Learning Approach with pRE-trained model for RealCL scenarios)も提案する。
論文 参考訳(メタデータ) (2024-04-11T13:19:46Z) - A Unified and General Framework for Continual Learning [58.72671755989431]
継続学習(CL)は、以前取得した知識を維持しながら、動的かつ変化するデータ分布から学ぶことに焦点を当てている。
正規化ベース、ベイズベース、メモリ再生ベースなど、破滅的な忘れ込みの課題に対処する様々な手法が開発されている。
本研究の目的は,既存の方法論を包含し,整理する包括的かつ包括的な枠組みを導入することで,このギャップを埋めることである。
論文 参考訳(メタデータ) (2024-03-20T02:21:44Z) - Read Between the Layers: Leveraging Multi-Layer Representations for Rehearsal-Free Continual Learning with Pre-Trained Models [15.847302755988506]
本研究では,非定常分布から連続的なタスク列を学習しなければならない連続学習問題に対処する。
プレトレーニングネットワークの複数の中間層からの2次特徴統計量を利用する,CL に対する新しいプロトタイプベースのアプローチである LayUP を提案する。
その結果、CLにおける事前学習モデルの表現能力を完全に消耗させることは、最終的な埋め込みをはるかに超えることを示した。
論文 参考訳(メタデータ) (2023-12-13T13:11:44Z) - Continual Learners are Incremental Model Generalizers [70.34479702177988]
本稿では,継続学習モデル(CL)が事前学習者に与える影響を幅広く研究する。
その結果, 微調整性能が著しく低下することなく, 表現の伝達品質が徐々に向上することがわかった。
本稿では,下流タスクの解法において,リッチなタスクジェネリック表現を保存できる新しい微調整方式GLobal Attention Discretization(GLAD)を提案する。
論文 参考訳(メタデータ) (2023-06-21T05:26:28Z) - Do Pre-trained Models Benefit Equally in Continual Learning? [25.959813589169176]
既存の継続学習(CL)の研究は主に、ゼロから訓練されたモデルのアルゴリズムの開発に費やされている。
コントリビュートベンチマークのパフォーマンスは高いが、これらのアルゴリズムは現実のシナリオで劇的なパフォーマンス低下を示す。
本稿では,CLに対する事前学習の体系的導入を提唱する。
論文 参考訳(メタデータ) (2022-10-27T18:03:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。