Latent Convergence Modulation in Large Language Models: A Novel Approach to Iterative Contextual Realignment
- URL: http://arxiv.org/abs/2502.06302v1
- Date: Mon, 10 Feb 2025 09:46:33 GMT
- Title: Latent Convergence Modulation in Large Language Models: A Novel Approach to Iterative Contextual Realignment
- Authors: Patricia Porretta, Sylvester Pakenham, Huxley Ainsworth, Gregory Chatten, Godfrey Allerton, Simon Hollingsworth, Vance Periwinkle,
- Abstract summary: A structured modulation mechanism was introduced to regulate hidden state transitions.
Lattice adjustments contributed to reductions in perplexity fluctuations, entropy variance, and lexical instability.
- Score: 0.0
- License:
- Abstract: Token prediction stability remains a challenge in autoregressive generative models, where minor variations in early inference steps often lead to significant semantic drift over extended sequences. A structured modulation mechanism was introduced to regulate hidden state transitions, ensuring that latent representation trajectories remain aligned with prior contextual dependencies while preserving generative flexibility. The modulation framework was designed to function within transformer-based architectures, dynamically constraining representation evolution without imposing external memory dependencies or extensive architectural modifications. Empirical evaluations demonstrated that structured latent adjustments contributed to reductions in perplexity fluctuations, entropy variance, and lexical instability, improving coherence in long-form text generation. Gradient propagation stability was further analyzed, revealing that the modulation process led to smoother optimization pathways, mitigating erratic fluctuations in weight updates across successive inference steps. The computational efficiency of the modulation process was assessed, showing that its integration within transformer-based architectures introduced only marginal overhead while maintaining compatibility with existing optimization frameworks. The structured modulation constraints also influenced syntactic variation, preventing excessive repetition while maintaining balanced sentence length distributions. Comparative evaluations against baseline models reinforced the role of controlled latent state evolution in improving pronoun resolution, logical consistency, and contextual alignment across autoregressive text generation tasks.
Related papers
- FELLE: Autoregressive Speech Synthesis with Token-Wise Coarse-to-Fine Flow Matching [51.32059240975148]
FELLE is an autoregressive model that integrates language modeling with token-wise flow matching.
For each continuous-valued token, FELLE modifies the general prior distribution in flow matching by incorporating information from the previous step.
FELLE generates continuous-valued tokens hierarchically, conditioned on the language model's output.
arXiv Detail & Related papers (2025-02-16T13:54:32Z) - Exploring Contextual Flux in Large Language Models: A Novel Approach to Self-Modulating Semantic Networks [0.0]
Self-modulating mechanisms introduce dynamic adaptation capabilities within language models.
contextual realignment strategies influence token embedding trajectories across extended sequences.
Self-regulation enhances text generation consistency while preserving generative flexibility.
Findings suggest that while adaptive embedding updates improve certain aspects of coherence, their impact remains contingent on model capacity and input complexity.
arXiv Detail & Related papers (2025-02-16T01:08:19Z) - Lexical Manifold Reconfiguration in Large Language Models: A Novel Architectural Approach for Contextual Modulation [0.0]
A structured approach was developed for dynamically reconfiguring token embeddings through continuous geometric transformations.
A manifold-based transformation mechanism was integrated to regulate lexical positioning, allowing embeddings to undergo controlled shifts.
Empirical evaluations demonstrated that embedding reconfiguration contributed to reductions in perplexity, improved lexical coherence, and enhanced sentence-level continuity.
arXiv Detail & Related papers (2025-02-12T22:11:07Z) - Hierarchical Contextual Manifold Alignment for Structuring Latent Representations in Large Language Models [7.798982346197703]
The organization of latent token representations plays a crucial role in determining the stability, generalization, and contextual consistency of language models.
A hierarchical alignment method was introduced to token embeddings without altering core model weights.
Experimental evaluations demonstrated improvements in rare token retrieval, adversarial, and long-range dependency tracking.
arXiv Detail & Related papers (2025-02-06T04:01:27Z) - Context-Preserving Gradient Modulation for Large Language Models: A Novel Approach to Semantic Consistency in Long-Form Text Generation [0.19791587637442667]
A novel modulation gradient approach is introduced to adjust parameter updates dynamically in response to contextual relevance.
The proposed method enhances the stability of model-generated narratives without imposing significant computational overhead.
arXiv Detail & Related papers (2025-02-05T22:13:06Z) - Gradient-Regularized Latent Space Modulation in Large Language Models for Structured Contextual Synthesis [0.0]
This paper introduces a novel paradigm for guiding text generation through the application of structured constraints within the latent space.
The integration of gradient-based regularizations mitigates abrupt variations in latent representations.
The framework substantially reduces structural inconsistencies while preserving the generative flexibility inherent in neural models.
arXiv Detail & Related papers (2025-02-04T03:43:52Z) - Sequential Representation Learning via Static-Dynamic Conditional Disentanglement [58.19137637859017]
This paper explores self-supervised disentangled representation learning within sequential data, focusing on separating time-independent and time-varying factors in videos.
We propose a new model that breaks the usual independence assumption between those factors by explicitly accounting for the causal relationship between the static/dynamic variables.
Experiments show that the proposed approach outperforms previous complex state-of-the-art techniques in scenarios where the dynamics of a scene are influenced by its content.
arXiv Detail & Related papers (2024-08-10T17:04:39Z) - Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
We propose to strengthen the structural inductive bias of a Transformer by intermediate pre-training.
Our experiments confirm that this helps with few-shot learning of syntactic tasks such as chunking.
Our analysis shows that the intermediate pre-training leads to attention heads that keep track of which syntactic transformation needs to be applied to which token.
arXiv Detail & Related papers (2024-07-05T14:29:44Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Recurrence Boosts Diversity! Revisiting Recurrent Latent Variable in
Transformer-Based Variational AutoEncoder for Diverse Text Generation [85.5379146125199]
Variational Auto-Encoder (VAE) has been widely adopted in text generation.
We propose TRACE, a Transformer-based recurrent VAE structure.
arXiv Detail & Related papers (2022-10-22T10:25:35Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.