Contextual Gradient Flow Modeling for Large Language Model Generalization in Multi-Scale Feature Spaces
- URL: http://arxiv.org/abs/2502.04548v1
- Date: Thu, 06 Feb 2025 22:57:40 GMT
- Title: Contextual Gradient Flow Modeling for Large Language Model Generalization in Multi-Scale Feature Spaces
- Authors: Daphne Quillington, Kingsley Fairbrother, Xavier Tattershall, Irin Kabakum,
- Abstract summary: A structured gradient refinement framework was introduced to incorporate multi-scale contextual adjustments.
The hierarchical adjustment of weight updates provided an alternative to conventional backpropagation.
structured optimization strategies mitigated overfitting while preserving adaptability across heterogeneous text distributions.
- Score: 0.0
- License:
- Abstract: Optimization methodologies for training large-scale neural architectures often rely on uniform gradient propagation mechanisms that fail to align with hierarchical linguistic structures, limiting their capacity to generalize across diverse language distributions. A structured gradient refinement framework was introduced to incorporate multi-scale contextual adjustments, improving parameter adaptation through dynamic weighting strategies that enhanced representation coherence. Empirical evaluations demonstrated that structured propagation mechanisms contributed to reductions in gradient oscillations, resulting in more stable training dynamics and improved optimization efficiency. The comparative performance assessment indicated that models incorporating hierarchical propagation strategies exhibited greater robustness in long-range dependency retention and cross-domain adaptation. The hierarchical adjustment of weight updates provided an alternative to conventional backpropagation, reducing sensitivity to initialization conditions while improving overall convergence efficiency. The experimental results confirmed that structured gradient propagation influenced representation learning trajectories, aligning parameter updates with broader linguistic dependencies rather than isolated token-level relationships. Statistical evaluations indicated that structured optimization strategies mitigated overfitting while preserving adaptability across heterogeneous text distributions. The findings established that structured gradient propagation provided an empirically validated framework for refining hierarchical representation learning, supporting more effective integration of linguistic dependencies into optimization dynamics.
Related papers
- Structured Convergence in Large Language Model Representations via Hierarchical Latent Space Folding [0.0]
Token representations in high-dimensional latent spaces often exhibit redundancy, limiting computational efficiency and reducing structural coherence across model layers.
This paper introduces a structured transformation mechanism that enforces a multi-scale organization within learned embeddings.
Empirical evaluation demonstrates a reduction in representational variance across layers, contributing to more stable perplexity distributions and enhancing predictive confidence in text generation.
arXiv Detail & Related papers (2025-02-13T04:01:54Z) - Contextual Subspace Manifold Projection for Structural Refinement of Large Language Model Representations [0.0]
Internal representations within deep neural architectures encode high-dimensional abstractions of linguistic structures.
This paper introduces a structured refinement technique that selectively reconfigures token embeddings through controlled subspace constraints.
Empirical evaluations demonstrated that the structured intervention reduced anisotropy, leading to improved representation compactness.
arXiv Detail & Related papers (2025-02-12T00:00:37Z) - Hierarchical Contextual Manifold Alignment for Structuring Latent Representations in Large Language Models [7.798982346197703]
The organization of latent token representations plays a crucial role in determining the stability, generalization, and contextual consistency of language models.
A hierarchical alignment method was introduced to token embeddings without altering core model weights.
Experimental evaluations demonstrated improvements in rare token retrieval, adversarial, and long-range dependency tracking.
arXiv Detail & Related papers (2025-02-06T04:01:27Z) - Structural Embedding Projection for Contextual Large Language Model Inference [0.0]
Structured embedding transformations offer a promising approach for enhancing the efficiency and coherence of language model inference.
The mathematical formulation of Structural Embedding Projection (SEP) enables embedding spaces to capture structured contextual relationships.
The impact of SEP on lexical diversity suggested that embedding modifications influenced the model's vocabulary usage.
arXiv Detail & Related papers (2025-01-31T00:46:21Z) - Contextually Entangled Gradient Mapping for Optimized LLM Comprehension [0.0]
Entually Entangled Gradient Mapping (CEGM) introduces a new approach to gradient optimization.
It treats gradients as dynamic carriers of contextual dependencies rather than isolated numerical entities.
The proposed methodology bridges critical gaps in existing optimization strategies.
arXiv Detail & Related papers (2025-01-28T11:50:35Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
Reparameterization aims to improve the generalization of deep neural networks by transforming convolutional layers into equivalent multi-branched structures during training.
We present a novel spatial gradient scaling method to redistribute learning focus among weights in convolutional networks.
arXiv Detail & Related papers (2023-03-05T17:57:33Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
Best-Response Constraint (BRC) is a general learning framework to explicitly formulate the potential dependency of the generator on the discriminator.
We show that even with different motivations and formulations, a variety of existing GANs ALL can be uniformly improved by our flexible BRC methodology.
arXiv Detail & Related papers (2022-05-20T12:42:41Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
This paper analyzes a framework for improving generalization in a purely supervised setting, where the target space is high-dimensional.
We motivate and formalize the general framework of target-embedding autoencoders (TEA) for supervised prediction, learning intermediate latent representations jointly optimized to be both predictable from features as well as predictive of targets.
arXiv Detail & Related papers (2020-01-23T02:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.