Learning Clustering-based Prototypes for Compositional Zero-shot Learning
- URL: http://arxiv.org/abs/2502.06501v1
- Date: Mon, 10 Feb 2025 14:20:01 GMT
- Title: Learning Clustering-based Prototypes for Compositional Zero-shot Learning
- Authors: Hongyu Qu, Jianan Wei, Xiangbo Shu, Wenguan Wang,
- Abstract summary: ClusPro is a robust clustering-based prototype mining framework for Compositional Zero-Shot Learning.
It defines the conceptual boundaries of primitives through a set of diversified prototypes.
ClusPro efficiently performs prototype clustering in a non-parametric fashion without the introduction of additional learnable parameters.
- Score: 56.57299428499455
- License:
- Abstract: Learning primitive (i.e., attribute and object) concepts from seen compositions is the primary challenge of Compositional Zero-Shot Learning (CZSL). Existing CZSL solutions typically rely on oversimplified data assumptions, e.g., modeling each primitive with a single centroid primitive representation, ignoring the natural diversities of the attribute (resp. object) when coupled with different objects (resp. attribute). In this work, we develop ClusPro, a robust clustering-based prototype mining framework for CZSL that defines the conceptual boundaries of primitives through a set of diversified prototypes. Specifically, ClusPro conducts within-primitive clustering on the embedding space for automatically discovering and dynamically updating prototypes. These representative prototypes are subsequently used to repaint a well-structured and independent primitive embedding space, ensuring intra-primitive separation and inter-primitive decorrelation through prototype-based contrastive learning and decorrelation learning. Moreover, ClusPro efficiently performs prototype clustering in a non-parametric fashion without the introduction of additional learnable parameters or computational budget during testing. Experiments on three benchmarks demonstrate ClusPro outperforms various top-leading CZSL solutions under both closed-world and open-world settings.
Related papers
- Dual-Modal Prototype Joint Learning for Compositional Zero-Shot Learning [15.183106475115583]
Compositional Zero-Shot Learning (CZSL) aims to recognize novel compositions of attributes and objects by leveraging knowledge learned from seen compositions.
We propose a novel Dual-Modal Prototype Joint Learning framework for the CZSL task.
arXiv Detail & Related papers (2025-01-23T17:30:27Z) - FedSA: A Unified Representation Learning via Semantic Anchors for Prototype-based Federated Learning [4.244188591221394]
We propose a novel framework named Federated Learning via Semantic Anchors (FedSA) to decouple the generation of prototypes from local representation learning.
FedSA significantly outperforms existing prototype-based FL methods on various classification tasks.
arXiv Detail & Related papers (2025-01-09T16:10:03Z) - Cross-composition Feature Disentanglement for Compositional Zero-shot Learning [49.919635694894204]
Disentanglement of visual features of primitives (i.e., attributes and objects) has shown exceptional results in Compositional Zero-shot Learning (CZSL)
We propose the solution of cross-composition feature disentanglement, which takes multiple primitive-sharing compositions as inputs and constrains the disentangled primitive features to be general across these compositions.
arXiv Detail & Related papers (2024-08-19T08:23:09Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
This paper revisits few-shot 3D point cloud semantic segmentation (FS-PCS)
We focus on two significant issues in the state-of-the-art: foreground leakage and sparse point distribution.
To address these issues, we introduce a standardized FS-PCS setting, upon which a new benchmark is built.
arXiv Detail & Related papers (2024-03-01T15:14:47Z) - ProCC: Progressive Cross-primitive Compatibility for Open-World
Compositional Zero-Shot Learning [29.591615811894265]
Open-World Compositional Zero-shot Learning (OW-CZSL) aims to recognize novel compositions of state and object primitives in images with no priors on the compositional space.
We propose a novel method, termed Progressive Cross-primitive Compatibility (ProCC), to mimic the human learning process for OW-CZSL tasks.
arXiv Detail & Related papers (2022-11-19T10:09:46Z) - Exploring Non-Contrastive Representation Learning for Deep Clustering [23.546602131801205]
Non-contrastive representation learning for deep clustering, termed NCC, is based on BYOL, a representative method without negative examples.
NCC forms an embedding space where all clusters are well-separated and within-cluster examples are compact.
Experimental results on several clustering benchmark datasets including ImageNet-1K demonstrate that NCC outperforms the state-of-the-art methods by a significant margin.
arXiv Detail & Related papers (2021-11-23T12:21:53Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - Structure-Aware Feature Generation for Zero-Shot Learning [108.76968151682621]
We introduce a novel structure-aware feature generation scheme, termed as SA-GAN, to account for the topological structure in learning both the latent space and the generative networks.
Our method significantly enhances the generalization capability on unseen-classes and consequently improve the classification performance.
arXiv Detail & Related papers (2021-08-16T11:52:08Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.