Diffusion Models for Computational Neuroimaging: A Survey
- URL: http://arxiv.org/abs/2502.06552v1
- Date: Mon, 10 Feb 2025 15:20:07 GMT
- Title: Diffusion Models for Computational Neuroimaging: A Survey
- Authors: Haokai Zhao, Haowei Lou, Lina Yao, Wei Peng, Ehsan Adeli, Kilian M Pohl, Yu Zhang,
- Abstract summary: Computational neuroimaging involves analyzing brain images or signals to provide mechanistic insights and predictive tools for human cognition and behavior.
diffusion models have shown stability and high-quality generation in natural images.
There is increasing interest in adapting them to analyze brain data for various neurological tasks such as data enhancement, disease diagnosis and brain decoding.
- Score: 20.24146298881525
- License:
- Abstract: Computational neuroimaging involves analyzing brain images or signals to provide mechanistic insights and predictive tools for human cognition and behavior. While diffusion models have shown stability and high-quality generation in natural images, there is increasing interest in adapting them to analyze brain data for various neurological tasks such as data enhancement, disease diagnosis and brain decoding. This survey provides an overview of recent efforts to integrate diffusion models into computational neuroimaging. We begin by introducing the common neuroimaging data modalities, follow with the diffusion formulations and conditioning mechanisms. Then we discuss how the variations of the denoising starting point, condition input and generation target of diffusion models are developed and enhance specific neuroimaging tasks. For a comprehensive overview of the ongoing research, we provide a publicly available repository at https://github.com/JoeZhao527/dm4neuro.
Related papers
- Single-neuron deep generative model uncovers underlying physics of neuronal activity in Ca imaging data [0.0]
We propose a novel framework for single-neuron representation learning using autoregressive variational autoencoders (AVAEs)
Our approach embeds individual neurons' signals into a reduced-dimensional space without the need for spike inference algorithms.
The AVAE excels over traditional linear methods by generating more informative and discriminative latent representations.
arXiv Detail & Related papers (2025-01-24T16:33:52Z) - A Review of Latent Representation Models in Neuroimaging [0.0]
Latent representation models are designed to reduce high-dimensional neuroimaging data to lower-dimensional latent spaces.
By modeling these latent spaces, researchers hope to gain insights into the biology and function of the brain.
This review discusses how these models are used for clinical applications, like disease diagnosis and progression monitoring, but also for exploring fundamental brain mechanisms.
arXiv Detail & Related papers (2024-12-24T19:12:11Z) - Exploring Behavior-Relevant and Disentangled Neural Dynamics with Generative Diffusion Models [2.600709013150986]
Understanding the neural basis of behavior is a fundamental goal in neuroscience.
Our approach, named BeNeDiff'', first identifies a fine-grained and disentangled neural subspace.
It then employs state-of-the-art generative diffusion models to synthesize behavior videos that interpret the neural dynamics of each latent factor.
arXiv Detail & Related papers (2024-10-12T18:28:56Z) - Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models [0.0]
We evaluate state-of-the-art brain anomaly detection models based on Variational Autoencoders and Diffusion Models.
Our findings indicate that some models effectively detect the primary alterations characterizing Down syndrome's brain anatomy.
arXiv Detail & Related papers (2024-09-20T12:01:15Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
State-of-the-art systems neuroscience experiments yield large-scale multimodal data, and these data sets require new tools for analysis.
Inspired by the success of large pretrained models in vision and language domains, we reframe the analysis of large-scale, cellular-resolution neuronal spiking data into an autoregressive generation problem.
We first trained Neuroformer on simulated datasets, and found that it both accurately predicted intrinsically simulated neuronal circuit activity, and also inferred the underlying neural circuit connectivity, including direction.
arXiv Detail & Related papers (2023-10-31T20:17:32Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.