On the Impact of the Utility in Semivalue-based Data Valuation
- URL: http://arxiv.org/abs/2502.06574v2
- Date: Fri, 23 May 2025 15:42:28 GMT
- Title: On the Impact of the Utility in Semivalue-based Data Valuation
- Authors: Mélissa Tamine, Benjamin Heymann, Patrick Loiseau, Maxime Vono,
- Abstract summary: Semivalue-based data valuation uses cooperative-game theory intuitions to assign each data point a value reflecting its contribution to a downstream task.<n>How robust is semivalue-based data valuation to changes in the utility?<n>We propose a practical methodology centered on an explicit robustness metric that informs practitioners whether and by how much their data valuation results will shift as the utility changes.
- Score: 11.207084981290123
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Semivalue-based data valuation uses cooperative-game theory intuitions to assign each data point a value reflecting its contribution to a downstream task. Still, those values depend on the practitioner's choice of utility, raising the question: How robust is semivalue-based data valuation to changes in the utility? This issue is critical when the utility is set as a trade-off between several criteria and when practitioners must select among multiple equally valid utilities. We address it by introducing the notion of a dataset's spatial signature: given a semivalue, we embed each data point into a lower-dimensional space where any utility becomes a linear functional, making the data valuation framework amenable to a simpler geometric picture. Building on this, we propose a practical methodology centered on an explicit robustness metric that informs practitioners whether and by how much their data valuation results will shift as the utility changes. We validate this approach across diverse datasets and semivalues, demonstrating strong agreement with rank-correlation analyses and offering analytical insight into how choosing a semivalue can amplify or diminish robustness.
Related papers
- Semivalue-based data valuation is arbitrary and gameable [4.051523221722475]
We argue that the game-theoretic notion of the semivalue offers a popular framework for credit attribution and data valuation in machine learning.<n>Small, but arguably reasonable changes to the utility function can induce substantial shifts in valuations across datapoints.<n>Low-cost adversarial strategies exist to exploit this ambiguity and systematically redistribute value among datapoints.
arXiv Detail & Related papers (2025-06-14T20:20:15Z) - DUPRE: Data Utility Prediction for Efficient Data Valuation [49.60564885180563]
Cooperative game theory-based data valuation, such as Data Shapley, requires evaluating the data utility and retraining the ML model for multiple data subsets.
Our framework, textttDUPRE, takes an alternative yet complementary approach that reduces the cost per subset evaluation by predicting data utilities instead of evaluating them by model retraining.
Specifically, given the evaluated data utilities of some data subsets, textttDUPRE fits a emphGaussian process (GP) regression model to predict the utility of every other data subset.
arXiv Detail & Related papers (2025-02-22T08:53:39Z) - Data Distribution Valuation [56.71023681599737]
Existing data valuation methods define a value for a discrete dataset.
In many use cases, users are interested in not only the value of the dataset, but that of the distribution from which the dataset was sampled.
We propose a maximum mean discrepancy (MMD)-based valuation method which enables theoretically principled and actionable policies.
arXiv Detail & Related papers (2024-10-06T07:56:53Z) - Position: Measure Dataset Diversity, Don't Just Claim It [8.551188808401294]
dataset curators frequently employ value-laden terms such as diversity, bias, and quality to characterize datasets.
Despite their prevalence, these terms lack clear definitions and validation.
Our research explores the implications of this issue by analyzing "diversity" across 135 image and text datasets.
arXiv Detail & Related papers (2024-07-11T05:13:27Z) - Scaling Laws for the Value of Individual Data Points in Machine Learning [55.596413470429475]
We introduce a new perspective by investigating scaling behavior for the value of individual data points.
We provide learning theory to support our scaling law, and we observe empirically that it holds across diverse model classes.
Our work represents a first step towards understanding and utilizing scaling properties for the value of individual data points.
arXiv Detail & Related papers (2024-05-30T20:10:24Z) - Data Valuation by Leveraging Global and Local Statistical Information [25.911043100052588]
We show that both global and local value distributions hold significant potential for data valuation within the context of machine learning.
We propose a new data valuation method that estimates Shapley values by incorporating the explored distribution characteristics into an existing method, AME.
We also present a new path to address the dynamic data valuation problem by formulating an optimization problem that integrates information of both global and local value distributions.
arXiv Detail & Related papers (2024-05-23T08:58:08Z) - Neural Dynamic Data Valuation [4.286118155737111]
We propose a novel data valuation method from the perspective of optimal control, named the neural dynamic data valuation (NDDV)
Our method has solid theoretical interpretations to accurately identify the data valuation via the sensitivity of the data optimal control state.
In addition, we implement a data re-weighting strategy to capture the unique features of data points, ensuring fairness through the interaction between data points and the mean-field states.
arXiv Detail & Related papers (2024-04-30T13:39:26Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerse is a universal framework for dataset characterization.
infoVerse captures multidimensional characteristics of datasets by incorporating various model-driven meta-information.
In three real-world applications (data pruning, active learning, and data annotation), the samples chosen on infoVerse space consistently outperform strong baselines.
arXiv Detail & Related papers (2023-05-30T18:12:48Z) - Towards Sequence Utility Maximization under Utility Occupancy Measure [53.234101208024335]
In the database, although utility is a flexible criterion for each pattern, it is a more absolute criterion due to neglect of utility sharing.
We first define utility occupancy on sequence data and raise the problem of High Utility-Occupancy Sequential Pattern Mining.
An algorithm called Sequence Utility Maximization with Utility occupancy measure (SUMU) is proposed.
arXiv Detail & Related papers (2022-12-20T17:28:53Z) - Data Banzhaf: A Robust Data Valuation Framework for Machine Learning [18.65808473565554]
This paper studies the robustness of data valuation to noisy model performance scores.
We introduce the concept of safety margin, which measures the robustness of a data value notion.
We show that the Banzhaf value achieves the largest safety margin among all semivalues.
arXiv Detail & Related papers (2022-05-30T23:44:09Z) - Investigating Data Variance in Evaluations of Automatic Machine
Translation Metrics [58.50754318846996]
In this paper, we show that the performances of metrics are sensitive to data.
The ranking of metrics varies when the evaluation is conducted on different datasets.
arXiv Detail & Related papers (2022-03-29T18:58:28Z) - Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators [91.3755431537592]
We show that even in arguably the simplest setting, estimation under ignorability assumptions can be misleading.
We consider two popular machine learning benchmark datasets for evaluation of heterogeneous treatment effect estimators.
We highlight that the inherent characteristics of the benchmark datasets favor some algorithms over others.
arXiv Detail & Related papers (2021-07-28T13:21:27Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z) - Effective Data-aware Covariance Estimator from Compressed Data [63.16042585506435]
We propose a data-aware weighted sampling based covariance matrix estimator, namely DACE, which can provide an unbiased covariance matrix estimation.
We conduct extensive experiments on both synthetic and real-world datasets to demonstrate the superior performance of our DACE.
arXiv Detail & Related papers (2020-10-10T10:10:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.