Semivalue-based data valuation is arbitrary and gameable
- URL: http://arxiv.org/abs/2506.12619v1
- Date: Sat, 14 Jun 2025 20:20:15 GMT
- Title: Semivalue-based data valuation is arbitrary and gameable
- Authors: Hannah Diehl, Ashia C. Wilson,
- Abstract summary: We argue that the game-theoretic notion of the semivalue offers a popular framework for credit attribution and data valuation in machine learning.<n>Small, but arguably reasonable changes to the utility function can induce substantial shifts in valuations across datapoints.<n>Low-cost adversarial strategies exist to exploit this ambiguity and systematically redistribute value among datapoints.
- Score: 4.051523221722475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The game-theoretic notion of the semivalue offers a popular framework for credit attribution and data valuation in machine learning. Semivalues have been proposed for a variety of high-stakes decisions involving data, such as determining contributor compensation, acquiring data from external sources, or filtering out low-value datapoints. In these applications, semivalues depend on the specification of a utility function that maps subsets of data to a scalar score. While it is broadly agreed that this utility function arises from a composition of a learning algorithm and a performance metric, its actual instantiation involves numerous subtle modeling choices. We argue that this underspecification leads to varying degrees of arbitrariness in semivalue-based valuations. Small, but arguably reasonable changes to the utility function can induce substantial shifts in valuations across datapoints. Moreover, these valuation methodologies are also often gameable: low-cost adversarial strategies exist to exploit this ambiguity and systematically redistribute value among datapoints. Through theoretical constructions and empirical examples, we demonstrate that a bad-faith valuator can manipulate utility specifications to favor preferred datapoints, and that a good-faith valuator is left without principled guidance to justify any particular specification. These vulnerabilities raise ethical and epistemic concerns about the use of semivalues in several applications. We conclude by highlighting the burden of justification that semivalue-based approaches place on modelers and discuss important considerations for identifying appropriate uses.
Related papers
- DUPRE: Data Utility Prediction for Efficient Data Valuation [49.60564885180563]
Cooperative game theory-based data valuation, such as Data Shapley, requires evaluating the data utility and retraining the ML model for multiple data subsets.<n>Our framework, textttDUPRE, takes an alternative yet complementary approach that reduces the cost per subset evaluation by predicting data utilities instead of evaluating them by model retraining.<n>Specifically, given the evaluated data utilities of some data subsets, textttDUPRE fits a emphGaussian process (GP) regression model to predict the utility of every other data subset.
arXiv Detail & Related papers (2025-02-22T08:53:39Z) - Feature Importance Depends on Properties of the Data: Towards Choosing the Correct Explanations for Your Data and Decision Trees based Models [3.8246193345000226]
We assess the quality of feature importance estimates provided by local explanation methods.<n>We find notable disparities in the magnitude and sign of the feature importance estimates generated by these methods.<n>Our assessment highlights these limitations and provides valuable insight into the suitability and reliability of different explanatory methods.
arXiv Detail & Related papers (2025-02-11T00:29:55Z) - On the Impact of the Utility in Semivalue-based Data Valuation [11.207084981290123]
Semivalue-based data valuation uses cooperative-game theory intuitions to assign each data point a value reflecting its contribution to a downstream task.<n>How robust is semivalue-based data valuation to changes in the utility?<n>We propose a practical methodology centered on an explicit robustness metric that informs practitioners whether and by how much their data valuation results will shift as the utility changes.
arXiv Detail & Related papers (2025-02-10T15:42:38Z) - Balancing Fairness and Accuracy in Data-Restricted Binary Classification [14.439413517433891]
This paper proposes a framework that models the trade-off between accuracy and fairness under four practical scenarios.
Experiments on three datasets demonstrate the utility of the proposed framework as a tool for quantifying the trade-offs.
arXiv Detail & Related papers (2024-03-12T15:01:27Z) - Studying How to Efficiently and Effectively Guide Models with Explanations [52.498055901649025]
'Model guidance' is the idea of regularizing the models' explanations to ensure that they are "right for the right reasons"
We conduct an in-depth evaluation across various loss functions, attribution methods, models, and 'guidance depths' on the PASCAL VOC 2007 and MS COCO 2014 datasets.
Specifically, we guide the models via bounding box annotations, which are much cheaper to obtain than the commonly used segmentation masks.
arXiv Detail & Related papers (2023-03-21T15:34:50Z) - Uncertainty-Aware Instance Reweighting for Off-Policy Learning [63.31923483172859]
We propose a Uncertainty-aware Inverse Propensity Score estimator (UIPS) for improved off-policy learning.
Experiment results on synthetic and three real-world recommendation datasets demonstrate the advantageous sample efficiency of the proposed UIPS estimator.
arXiv Detail & Related papers (2023-03-11T11:42:26Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
In model-based optimisation (MBO) we are interested in using machine learning to design candidates that maximise some measure of reward with respect to a black box function called the (ground truth) oracle.
While an approximation to the ground oracle can be trained and used in place of it during model validation to measure the mean reward over generated candidates, the evaluation is approximate and vulnerable to adversarial examples.
This is encapsulated under our proposed evaluation framework which is also designed to measure extrapolation.
arXiv Detail & Related papers (2022-11-19T16:57:37Z) - CS-Shapley: Class-wise Shapley Values for Data Valuation in
Classification [24.44357623723746]
We propose CS-Shapley, a Shapley value with a new value function that discriminates between training instances' in-class and out-of-class contributions.
Our results suggest Shapley-based data valuation is transferable for application across different models.
arXiv Detail & Related papers (2022-11-13T03:32:33Z) - Data Banzhaf: A Robust Data Valuation Framework for Machine Learning [18.65808473565554]
This paper studies the robustness of data valuation to noisy model performance scores.
We introduce the concept of safety margin, which measures the robustness of a data value notion.
We show that the Banzhaf value achieves the largest safety margin among all semivalues.
arXiv Detail & Related papers (2022-05-30T23:44:09Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.