論文の概要: A Case Study in Gamification for a Cybersecurity Education Program: A Game for Cryptography
- arxiv url: http://arxiv.org/abs/2502.06706v1
- Date: Mon, 10 Feb 2025 17:36:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:28:55.211852
- Title: A Case Study in Gamification for a Cybersecurity Education Program: A Game for Cryptography
- Title(参考訳): サイバーセキュリティ教育プログラムにおけるゲーミフィケーションのケーススタディ:暗号ゲーム
- Authors: Dylan Huitema, Albert Wong,
- Abstract要約: ゲーミフィケーションは実践的なハンズオン体験を提供する革新的なアプローチを提供する。
本稿では,ゲーミフィケーション暗号教育ツールの実例について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Advances in technology, a growing pool of sensitive data, and heightened global tensions has increased the demand for skilled cybersecurity professionals. Despite the recent increase in attention given to cybersecurity education, traditional approaches have continue in failing to keep pace with the rapidly evolving cyber threat landscape. Challenges such as a shortage of qualified educators and resource-intensive practical training exacerbate these issues. Gamification offers an innovative approach to provide practical hands-on experiences, and equip educators with up-to-date and accessible teaching tools that are targeted to industry-specific concepts. The paper begins with a review of the literature on existing challenges in cybersecurity education and gamification methods already employed in the field, before presenting a real-world case study of a gamified cryptography teaching tool. The paper discusses the design, development process, and intended use cases for this tool. This research highlights and provides an example of how integrating gamification into curricula can address key educational gaps, ensuring a more robust and effective pipeline of cybersecurity talent for the future.
- Abstract(参考訳): 技術の進歩、センシティブなデータのプールの増加、世界的な緊張の高まりにより、熟練したサイバーセキュリティ専門家の需要が増加した。
サイバーセキュリティ教育に最近注目が集まっているにもかかわらず、従来のアプローチは急速に進化するサイバー脅威の状況に追随し続けています。
資格のある教育者の不足や資源集約的な実践訓練といった課題がこれらの問題を悪化させている。
ゲーミフィケーションは実践的なハンズオン体験を提供する革新的なアプローチを提供し、業界固有の概念をターゲットにした最新かつアクセス可能な教育ツールを備えた教育者を提供する。
この論文は、すでにこの分野で使われているサイバーセキュリティ教育とゲーミフィケーション手法における既存の課題に関する文献のレビューから始まり、ゲーミフィケーション暗号教育ツールの実例を提示する。
本稿では,このツールの設計,開発プロセス,目的ユースケースについて論じる。
この研究は、キュリキュラにゲーミフィケーションを統合することで、重要な教育的ギャップに対処し、将来的にはより堅牢で効果的なサイバーセキュリティ人材のパイプラインを確実にする、という例を示している。
関連論文リスト
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
特定の種類の知識を選択的に忘れたり、抑圧したりするマシンアンラーニングは、プライバシとデータ削除タスクの約束を示している。
本稿では,アンラーニングがAI安全性の包括的ソリューションとして機能することを防止するための重要な制約を特定する。
論文 参考訳(メタデータ) (2025-01-09T03:59:10Z) - Exploring AI-Enabled Cybersecurity Frameworks: Deep-Learning Techniques, GPU Support, and Future Enhancements [0.4419843514606336]
新たなサイバーセキュリティシステムは、インシデントを検出し、アラートを分析し、イベントに応答する能力を高めるために、AIテクニック、特にディープラーニングアルゴリズムを取り入れている。
これらの技術は、動的なセキュリティ脅威と戦うための有望なアプローチを提供するが、しばしばかなりの計算資源を必要とする。
我々は、38のサイバーセキュリティフレームワークのうち3つのうち3つが活用している、合計2つの深層学習アルゴリズムを特定した。
論文 参考訳(メタデータ) (2024-12-17T08:14:12Z) - Ontology-Aware RAG for Improved Question-Answering in Cybersecurity Education [13.838970688067725]
AIによる質問応答(QA)システムは、サイバーセキュリティの問題解決における不確実性を積極的に管理することができる。
大規模言語モデル(LLM)は、高度な言語理解とユーザエンゲージメントを提供するAI駆動のQAシステムで注目を集めている。
我々は,サイバーセキュリティ教育における信頼性および安全性の高いQAシステムを開発するための,オントロジー対応検索強化世代(RAG)アプローチであるCyberRAGを提案する。
論文 参考訳(メタデータ) (2024-12-10T21:52:35Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
このプロジェクトは、高度自然言語処理(NLP)技術により、オンラインC2Cマーケットプレースにおける人身売買の急激な問題に取り組む。
我々は、最小限の監督で擬似ラベル付きデータセットを生成する新しい手法を導入し、最先端のNLPモデルをトレーニングするための豊富なリソースとして機能する。
重要な貢献は、Integrated Gradientsを使った解釈可能性フレームワークの実装であり、法執行にとって重要な説明可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-22T02:45:01Z) - Artificial Intelligence Ethics Education in Cybersecurity: Challenges
and Opportunities: a focus group report [10.547686057159309]
サイバーセキュリティにおけるAIツールの出現は多くの機会と不確実性を生み出している。
AIサイバーセキュリティ作業における“ブラックボックス”の精神の理解も、最も重要である。
将来のAI教育者や実践者は、厳格な技術トレーニングカリキュラムを実装することで、これらの問題に対処する必要がある。
論文 参考訳(メタデータ) (2023-11-02T00:08:07Z) - Software Repositories and Machine Learning Research in Cyber Security [0.0]
堅牢なサイバーセキュリティ防衛の統合は、ソフトウェア開発のあらゆる段階において不可欠になっている。
ソフトウェア要件プロセスにおけるこれらの初期段階の脆弱性の検出にトピックモデリングと機械学習を活用する試みが実施されている。
論文 参考訳(メタデータ) (2023-11-01T17:46:07Z) - Systemization of Knowledge (SoK)- Cross Impact of Transfer Learning in Cybersecurity: Offensive, Defensive and Threat Intelligence Perspectives [25.181087776375914]
本稿では,サイバーセキュリティにおけるトランスファーラーニング応用の包括的調査を行う。
この調査は、サイバーセキュリティにおける重要な問題に対処する上で、トランスファーラーニングの重要性を強調している。
本論文は,コミュニティの注意を必要とする今後の研究の方向性と課題を明らかにする。
論文 参考訳(メタデータ) (2023-09-12T00:26:38Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。