Learning an Optimal Assortment Policy under Observational Data
- URL: http://arxiv.org/abs/2502.06777v1
- Date: Mon, 10 Feb 2025 18:54:41 GMT
- Title: Learning an Optimal Assortment Policy under Observational Data
- Authors: Yuxuan Han, Han Zhong, Miao Lu, Jose Blanchet, Zhengyuan Zhou,
- Abstract summary: We study the fundamental problem of offline assortment optimization under the Multinomial Logit (MNL) model.
In this paper, we consider the offline learning paradigm and investigate the minimal data requirements for efficient offline assortment optimization.
- Score: 21.077030287930306
- License:
- Abstract: We study the fundamental problem of offline assortment optimization under the Multinomial Logit (MNL) model, where sellers must determine the optimal subset of the products to offer based solely on historical customer choice data. While most existing approaches to learning-based assortment optimization focus on the online learning of the optimal assortment through repeated interactions with customers, such exploration can be costly or even impractical in many real-world settings. In this paper, we consider the offline learning paradigm and investigate the minimal data requirements for efficient offline assortment optimization. To this end, we introduce Pessimistic Rank-Breaking (PRB), an algorithm that combines rank-breaking with pessimistic estimation. We prove that PRB is nearly minimax optimal by establishing the tight suboptimality upper bound and a nearly matching lower bound. This further shows that "optimal item coverage" - where each item in the optimal assortment appears sufficiently often in the historical data - is both sufficient and necessary for efficient offline learning. This significantly relaxes the previous requirement of observing the complete optimal assortment in the data. Our results provide fundamental insights into the data requirements for offline assortment optimization under the MNL model.
Related papers
- Preference Elicitation for Offline Reinforcement Learning [59.136381500967744]
We propose Sim-OPRL, an offline preference-based reinforcement learning algorithm.
Our algorithm employs a pessimistic approach for out-of-distribution data, and an optimistic approach for acquiring informative preferences about the optimal policy.
arXiv Detail & Related papers (2024-06-26T15:59:13Z) - The Importance of Online Data: Understanding Preference Fine-tuning via Coverage [25.782644676250115]
We study the similarities and differences between online and offline techniques for preference fine-tuning.
We prove that a global coverage condition is both necessary and sufficient for offline contrastive methods to converge to the optimal policy.
We derive a hybrid preference optimization algorithm that uses offline data for contrastive-based preference optimization and online data for KL regularization.
arXiv Detail & Related papers (2024-06-03T15:51:04Z) - Offline Model-Based Optimization via Policy-Guided Gradient Search [30.87992788876113]
We introduce a new learning-to-search- gradient perspective for offline optimization by reformulating it as an offline reinforcement learning problem.
Our proposed policy-guided search approach explicitly learns the best policy for a given surrogate model created from the offline data.
arXiv Detail & Related papers (2024-05-08T18:27:37Z) - Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data [102.16105233826917]
Learning from preference labels plays a crucial role in fine-tuning large language models.
There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning.
arXiv Detail & Related papers (2024-04-22T17:20:18Z) - Learning Goal-Conditioned Policies from Sub-Optimal Offline Data via Metric Learning [22.174803826742963]
We address the problem of learning optimal behavior from sub-optimal datasets for goal-conditioned offline reinforcement learning.
We propose the use of metric learning to approximate the optimal value function for goal-conditioned offline RL problems.
We show that our method estimates optimal behaviors from severely sub-optimal offline datasets without suffering from out-of-distribution estimation errors.
arXiv Detail & Related papers (2024-02-16T16:46:53Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
We show how structure can enable sample-efficient data-driven optimization.
We also present a data-driven optimization algorithm that infers the FGM structure itself.
arXiv Detail & Related papers (2024-01-08T22:33:14Z) - From Function to Distribution Modeling: A PAC-Generative Approach to
Offline Optimization [30.689032197123755]
This paper considers the problem of offline optimization, where the objective function is unknown except for a collection of offline" data examples.
Instead of learning and then optimizing the unknown objective function, we take on a less intuitive but more direct view that optimization can be thought of as a process of sampling from a generative model.
arXiv Detail & Related papers (2024-01-04T01:32:50Z) - PASTA: Pessimistic Assortment Optimization [25.51792135903357]
We consider a class of assortment optimization problems in an offline data-driven setting.
We propose an algorithm referred to as Pessimistic ASsortment opTimizAtion (PASTA) based on the principle of pessimism.
arXiv Detail & Related papers (2023-02-08T01:11:51Z) - Efficient Online Reinforcement Learning with Offline Data [78.92501185886569]
We show that we can simply apply existing off-policy methods to leverage offline data when learning online.
We extensively ablate these design choices, demonstrating the key factors that most affect performance.
We see that correct application of these simple recommendations can provide a $mathbf2.5times$ improvement over existing approaches.
arXiv Detail & Related papers (2023-02-06T17:30:22Z) - Data-Driven Offline Decision-Making via Invariant Representation
Learning [97.49309949598505]
offline data-driven decision-making involves synthesizing optimized decisions with no active interaction.
A key challenge is distributional shift: when we optimize with respect to the input into a model trained from offline data, it is easy to produce an out-of-distribution (OOD) input that appears erroneously good.
In this paper, we formulate offline data-driven decision-making as domain adaptation, where the goal is to make accurate predictions for the value of optimized decisions.
arXiv Detail & Related papers (2022-11-21T11:01:37Z) - Is Pessimism Provably Efficient for Offline RL? [104.00628430454479]
We study offline reinforcement learning (RL), which aims to learn an optimal policy based on a dataset collected a priori.
We propose a pessimistic variant of the value iteration algorithm (PEVI), which incorporates an uncertainty quantifier as the penalty function.
arXiv Detail & Related papers (2020-12-30T09:06:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.