論文の概要: OrderFusion: Encoding Orderbook for Probabilistic Intraday Price Prediction
- arxiv url: http://arxiv.org/abs/2502.06830v1
- Date: Wed, 05 Feb 2025 15:37:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:08:42.932530
- Title: OrderFusion: Encoding Orderbook for Probabilistic Intraday Price Prediction
- Title(参考訳): OrderFusion: 確率的日内価格予測のための注文書のエンコード
- Authors: Runyao Yu, Yuchen Tao, Fabian Leimgruber, Tara Esterl, Jochen L. Cremer,
- Abstract要約: OrderFusionと呼ばれる符号化手法を提案し,階層型マルチクエンタリーヘッドを設計する。
ヘッドは中央の量子化をアンカーとして設定し、複数の量子化を階層的に予測し、非負の関数を通して量子化の間の単調性を強化することによって信頼性を確保する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Efficient and reliable probabilistic prediction of intraday electricity prices is essential to manage market uncertainties and support robust trading strategies. However, current methods often suffer from parameter inefficiencies, as they fail to fully exploit the potential of modeling interdependencies between bids and offers in the orderbook, requiring a large number of parameters for representation learning. Furthermore, these methods face the quantile crossing issue, where upper quantiles fall below the lower quantiles, resulting in unreliable probabilistic predictions. To address these two challenges, we propose an encoding method called OrderFusion and design a hierarchical multi-quantile head. The OrderFusion encodes the orderbook into a 2.5D representation, which is processed by a tailored jump cross-attention backbone to capture the interdependencies of bids and offers, enabling parameter-efficient learning. The head sets the median quantile as an anchor and predicts multiple quantiles hierarchically, ensuring reliability by enforcing monotonicity between quantiles through non-negative functions. Extensive experiments and ablation studies are conducted on four price indices: 60-min ID3, 60-min ID1, 15-min ID3, and 15-min ID1 using the German orderbook over three years to ensure a fair evaluation. The results confirm that our design choices improve overall performance, offering a parameter-efficient and reliable solution for probabilistic intraday price prediction.
- Abstract(参考訳): 市場不確実性を管理し、ロバストな取引戦略を支援するためには、日内電力価格の効率的かつ信頼性の高い確率予測が不可欠である。
しかしながら、現在の手法は、入札と注文書の提示の間の相互依存をモデル化する可能性を十分に活用できず、表現学習に大量のパラメータを必要とするため、パラメータ非効率に悩まされることが多い。
さらに、これらの手法は、上位の量子化が下位の量子化よりも下降し、信頼性の低い確率的予測をもたらす、量子化交差問題に直面している。
これら2つの課題に対処するために、OrderFusionと呼ばれる符号化手法を提案し、階層型マルチクエンタリーヘッドを設計する。
OrderFusionは、注文ブックを2.5D表現にエンコードする。これは、調整されたジャンプアテンションバックボーンによって処理され、入札とオファーの相互依存性をキャプチャし、パラメータ効率の学習を可能にする。
ヘッドは中央の量子化をアンカーとして設定し、複数の量子化を階層的に予測し、非負の関数を通して量子化の間の単調性を強化することによって信頼性を確保する。
60-min ID3, 60-min ID1, 15-min ID3, 15-min ID1の4つの価格指標について, 3年間にわたってドイツの注文帳を用いて, 公正な評価を図った。
その結果,我々の設計選択によって全体の性能が向上し,パラメータ効率が向上し,日内価格予測のための信頼性の高いソリューションが提供されることがわかった。
関連論文リスト
- Jakiro: Boosting Speculative Decoding with Decoupled Multi-Head via MoE [15.003006630308517]
投機的復号(SD)は、より小さなドラフトモデルを用いて複数のトークンを予測することで、大きな言語モデル推論を加速する。
本稿では,専門家の混在(Mixture of Experts, MoE)を利用したJakiroを提案する。
提案手法は予測精度を大幅に向上し,推論高速化を実現する。
論文 参考訳(メタデータ) (2025-02-10T09:24:06Z) - PCF-Lift: Panoptic Lifting by Probabilistic Contrastive Fusion [80.79938369319152]
我々は,PCF(Probabilis-tic Contrastive Fusion)に基づくPCF-Liftという新しいパイプラインを設計する。
私たちのPCFリフトは、ScanNetデータセットやMessy Roomデータセット(シーンレベルのPQが4.4%改善)など、広く使用されているベンチマークにおいて、最先端の手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2024-10-14T16:06:59Z) - The Benefit of Being Bayesian in Online Conformal Prediction [7.713245413733777]
ブラックボックス機械学習モデルを用いて、有効な信頼セットのオンライン構築について検討する。
対象の信頼レベルを量子レベルに変換することにより、逐次明らかにされたデータシーケンスの量子レベルを予測することで、問題を小さくすることができる。
論文 参考訳(メタデータ) (2024-10-03T15:04:47Z) - Multiple Hypothesis Dropout: Estimating the Parameters of Multi-Modal
Output Distributions [22.431244647796582]
本稿では,複数出力関数(Multiple-Output function, MoM)の解法について, 新たな解法であるMultiple hypothesis Dropoutを用いて提案する。
教師付き学習問題に対する実験は、我々の手法がマルチモーダルな出力分布を再構築するための既存のソリューションよりも優れていることを示している。
教師なし学習問題に関するさらなる研究は、離散オートエンコーダ内の潜在後続分布のパラメータを推定することで、コードブックの効率、サンプル品質、精度、リコールを大幅に改善することを示している。
論文 参考訳(メタデータ) (2023-12-18T22:20:11Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Self-Evaluation Guided Beam Search for Reasoning [61.523627290397556]
我々は,Large Language Model (LLM) の推論プロセスのガイドと校正を行うための段階的自己評価機構を導入する。
本稿では,ビームサーチによる自己評価ガイダンスを統合した復号アルゴリズムを提案する。
我々のアプローチは、GSM8K、AQuA、StrategyQAにおいて、対応するCodexバックボンドベースラインをわずかに精度6.34%、9.56%、および5.46%で上回る。
論文 参考訳(メタデータ) (2023-05-01T02:37:59Z) - Quantum computational finance: martingale asset pricing for incomplete
markets [69.73491758935712]
金融の価格問題に様々な量子技術を適用することができることを示す。
従来の研究と異なる3つの方法について議論する。
論文 参考訳(メタデータ) (2022-09-19T09:22:01Z) - Transformer Uncertainty Estimation with Hierarchical Stochastic
Attention [8.95459272947319]
本稿では,変圧器に不確実性推定機能を持たせるための新しい手法を提案する。
これは、価値と学習可能なセントロイドのセットに付随する階層的な自己注意を学ぶことで達成される。
我々は、ドメイン内(ID)とドメイン外(OOD)の両方のデータセットを用いて、2つのテキスト分類タスクでモデルを実証的に評価する。
論文 参考訳(メタデータ) (2021-12-27T16:43:31Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。