論文の概要: Bridging Traffic State and Trajectory for Dynamic Road Network and Trajectory Representation Learning
- arxiv url: http://arxiv.org/abs/2502.06870v1
- Date: Sat, 08 Feb 2025 06:36:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:09:34.873302
- Title: Bridging Traffic State and Trajectory for Dynamic Road Network and Trajectory Representation Learning
- Title(参考訳): 動的道路網と軌道表現学習のためのブリッジ交通状況と軌道
- Authors: Chengkai Han, Jingyuan Wang, Yongyao Wang, Xie Yu, Hao Lin, Chao Li, Junjie Wu,
- Abstract要約: TRACKは、動的道路網と軌道表現学習のためのトラジェクトリデータとトラジェクトリデータをブリッジする新しいフレームワークである。
トラジェクトリデータからの遷移確率をGAT注意重みに組み込むことで、TRACKは道路セグメントの動的空間的特徴を捉える。
実生活都市交通データセットの実験は、最先端のベースラインよりもTRACKの方が優れていることを示した。
- 参考スコア(独自算出の注目度): 19.17907170280741
- License:
- Abstract: Effective urban traffic management is vital for sustainable city development, relying on intelligent systems with machine learning tasks such as traffic flow prediction and travel time estimation. Traditional approaches usually focus on static road network and trajectory representation learning, and overlook the dynamic nature of traffic states and trajectories, which is crucial for downstream tasks. To address this gap, we propose TRACK, a novel framework to bridge traffic state and trajectory data for dynamic road network and trajectory representation learning. TRACK leverages graph attention networks (GAT) to encode static and spatial road segment features, and introduces a transformer-based model for trajectory representation learning. By incorporating transition probabilities from trajectory data into GAT attention weights, TRACK captures dynamic spatial features of road segments. Meanwhile, TRACK designs a traffic transformer encoder to capture the spatial-temporal dynamics of road segments from traffic state data. To further enhance dynamic representations, TRACK proposes a co-attentional transformer encoder and a trajectory-traffic state matching task. Extensive experiments on real-life urban traffic datasets demonstrate the superiority of TRACK over state-of-the-art baselines. Case studies confirm TRACK's ability to capture spatial-temporal dynamics effectively.
- Abstract(参考訳): 効果的な都市交通管理は持続可能な都市開発に不可欠であり、交通フロー予測や旅行時間推定といった機械学習タスクを備えたインテリジェントシステムに依存している。
従来のアプローチでは、静的な道路ネットワークと軌道表現学習に重点を置いており、下流のタスクにとって重要な交通状態や軌道の動的な性質を見落としている。
このギャップに対処するために,交通状況をブリッジする新しいフレームワークであるTRACKを提案する。
TRACKは、グラフアテンションネットワーク(GAT)を活用して、静的および空間的な道路セグメント特徴を符号化し、軌道表現学習のためのトランスフォーマーベースモデルを導入する。
トラジェクトリデータからの遷移確率をGAT注意重みに組み込むことで、TRACKは道路セグメントの動的空間的特徴を捉える。
一方、TRACKは、交通状態データから道路セグメントの時空間ダイナミクスを捉えるために、トラヒックトランスフォーマーエンコーダを設計する。
動的表現をさらに強化するため、TRACKはコアテンショナルトランスフォーマーエンコーダとトラジェクトリ・トラヒック状態マッチングタスクを提案する。
実生活の都市交通データセットに関する大規模な実験は、最先端のベースラインよりもTRACKの方が優れていることを示した。
ケーススタディでは、TRACKが空間時間力学を効果的に捉える能力が確認されている。
関連論文リスト
- Trajectory Representation Learning on Road Networks and Grids with Spatio-Temporal Dynamics [0.8655526882770742]
軌道表現学習は、スマートシティや都市計画など分野の応用における基本的な課題である。
本稿では,時間的ダイナミクスを取り入れつつ,グリッドと道路ネットワークのモダリティを統合する新しいモデルであるTIGRを提案する。
実世界の2つのデータセット上でTIGRを評価し,両モードの組み合わせの有効性を実証した。
論文 参考訳(メタデータ) (2024-11-21T10:56:02Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - FDTI: Fine-grained Deep Traffic Inference with Roadnet-enriched Graph [10.675666104503119]
本稿では,詳細な深部交通推論をedIと呼ぶ。
道路間の関係をモデル化するために,交通信号に基づくきめ細かい交通グラフを構築した。
私たちは、都市レベルのきめ細かい交通予測を最初に実施しました。
論文 参考訳(メタデータ) (2023-06-19T14:03:42Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Modeling Network-level Traffic Flow Transitions on Sparse Data [6.756998301171409]
本稿では,スパースデータからネットワークレベルのトラフィックフローを予測できるDTIGNNを提案する。
提案手法は最先端の手法よりも優れており,交通機関の意思決定支援に有効であることを示す。
論文 参考訳(メタデータ) (2022-08-13T13:30:35Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
本稿では,空間的動的相互作用グラフ(SDG)と行動依存グラフ(BDG)を用いて,交通信号に対する軌道予測手法D2-TPredを提案する。
実験の結果,VTP-TLではADEとFDEでそれぞれ20.45%,20.78%以上を達成できた。
論文 参考訳(メタデータ) (2022-07-21T10:19:07Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
本稿では,空間時間グラフモデリングと長期交通予測のための新しいモデルであるTraffic Transformerを提案する。
Transformerは自然言語処理(NLP)で最も人気のあるフレームワークです。
注目重量行列を解析すれば 道路網の 影響力のある部分を見つけられる 交通網をよりよく学べる
論文 参考訳(メタデータ) (2021-04-12T02:29:58Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - Traffic Data Imputation using Deep Convolutional Neural Networks [2.7647400328727256]
我々は、よく訓練されたニューラルネットワークが、時間空間図から交通速度のダイナミクスを学習できることを示します。
提案手法は, 車両の侵入プローブレベルを5%以下に抑えることで, マクロな交通速度を再現できることを示す。
論文 参考訳(メタデータ) (2020-01-21T12:52:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。