論文の概要: RAG Does Not Work for Enterprises
- arxiv url: http://arxiv.org/abs/2406.04369v1
- Date: Fri, 31 May 2024 23:30:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-23 14:05:12.648380
- Title: RAG Does Not Work for Enterprises
- Title(参考訳): RAGはエンタープライズでは機能しない
- Authors: Tilmann Bruckhaus,
- Abstract要約: Retrieval-Augmented Generation (RAG)は、知識検索を取り入れた大規模言語モデル出力の精度と妥当性を向上させる。
企業におけるRAGの実装は、データセキュリティ、正確性、スケーラビリティ、統合に関する課題を引き起こす。
本稿では、エンタープライズRAGのユニークな要件について検討し、現在のアプローチと限界を調査し、セマンティック検索、ハイブリッドクエリ、最適化された検索の潜在的な進歩について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) improves the accuracy and relevance of large language model outputs by incorporating knowledge retrieval. However, implementing RAG in enterprises poses challenges around data security, accuracy, scalability, and integration. This paper explores the unique requirements for enterprise RAG, surveys current approaches and limitations, and discusses potential advances in semantic search, hybrid queries, and optimized retrieval. It proposes an evaluation framework to validate enterprise RAG solutions, including quantitative testing, qualitative analysis, ablation studies, and industry case studies. This framework aims to help demonstrate the ability of purpose-built RAG architectures to deliver accuracy and relevance improvements with enterprise-grade security, compliance and integration. The paper concludes with implications for enterprise deployments, limitations, and future research directions. Close collaboration between researchers and industry partners may accelerate progress in developing and deploying retrieval-augmented generation technology.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG)は、知識検索を取り入れた大規模言語モデル出力の精度と妥当性を向上させる。
しかしながら、企業におけるRAGの実装は、データセキュリティ、正確性、スケーラビリティ、統合に関する課題を引き起こします。
本稿では、エンタープライズRAGのユニークな要件について検討し、現在のアプローチと限界を調査し、セマンティック検索、ハイブリッドクエリ、最適化された検索の潜在的な進歩について考察する。
定量テスト,定性分析,アブレーション研究,産業ケーススタディなど,企業RAGソリューションを評価するための評価フレームワークを提案する。
このフレームワークは、エンタープライズグレードのセキュリティ、コンプライアンス、統合による正確性と関連性の向上を実現するために、目的に構築されたRAGアーキテクチャの能力を実証することを目的としている。
論文は、企業展開、制限、今後の研究方向性に影響を及ぼすと結論付けている。
研究者と業界パートナーの緊密なコラボレーションは、検索強化世代技術の開発と展開の進展を加速させる可能性がある。
関連論文リスト
- An Adaptive Framework for Generating Systematic Explanatory Answer in Online Q&A Platforms [62.878616839799776]
質問応答(QA)性能を向上させるために設計された,革新的なフレームワークであるSynthRAGを提案する。
SynthRAGは動的コンテンツの構造化に適応的なアウトラインを用いることで従来のモデルを改善する。
Zhihuプラットフォーム上のオンラインデプロイメントでは、SynthRAGの回答が注目すべきユーザエンゲージメントを実現していることが明らかになった。
論文 参考訳(メタデータ) (2024-10-23T09:14:57Z) - A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions [0.0]
RAGは、検索機構と生成言語モデルを組み合わせることで、出力の精度を高める。
近年の研究では, 検索効率向上のための新しい手法が注目されている。
RAGモデルの堅牢性向上に焦点をあてた今後の研究方向性が提案されている。
論文 参考訳(メタデータ) (2024-10-03T22:29:47Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - A Knowledge-Centric Benchmarking Framework and Empirical Study for Retrieval-Augmented Generation [4.359511178431438]
Retrieval-Augmented Generation (RAG)は、検索機構を統合することで生成モデルを強化する。
その利点にもかかわらず、RAGは特に現実世界のクエリを効果的に処理する上で、大きな課題に直面している。
本稿では,これらの課題に対処する新しいRAGベンチマークを提案する。
論文 参考訳(メタデータ) (2024-09-03T03:31:37Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - DuetRAG: Collaborative Retrieval-Augmented Generation [57.440772556318926]
協調検索拡張生成フレームワークであるDuetRAGが提案されている。
ブートストラップの哲学はドメインフィニングとRAGモデルを同時に統合することである。
論文 参考訳(メタデータ) (2024-05-12T09:48:28Z) - A Survey on Retrieval-Augmented Text Generation for Large Language Models [1.4579344926652844]
Retrieval-Augmented Generation (RAG)は、検索手法とディープラーニングの進歩を融合する。
本稿では,RAGパラダイムを検索前,検索後,検索後,生成の4つのカテゴリに分類する。
RAGの進化を概説し、重要な研究の分析を通して分野の進歩について論じている。
論文 参考訳(メタデータ) (2024-04-17T01:27:42Z) - Not All Contexts Are Equal: Teaching LLMs Credibility-aware Generation [47.42366169887162]
Credibility-Aware Generation (CAG) は、信頼性に基づいて情報を識別・処理する能力を備えたモデルを提供することを目的としている。
提案モデルは,生成に対する信頼性を効果的に理解し活用し,検索強化により他のモデルよりも大幅に優れ,ノイズの多い文書による破壊に対するレジリエンスを示す。
論文 参考訳(メタデータ) (2024-04-10T07:56:26Z) - Retrieval-Augmented Generation for AI-Generated Content: A Survey [38.50754568320154]
このような課題に対処するためのパラダイムとして,レトリーバル拡張生成(RAG)が登場している。
RAGは情報検索プロセスを導入し、利用可能なデータストアから関連オブジェクトを検索することで生成プロセスを強化する。
本稿では,RAG手法をAIGCシナリオに統合する既存の取り組みを概観的にレビューする。
論文 参考訳(メタデータ) (2024-02-29T18:59:01Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR(Relevance-Aware Retrieval-augmented approach for open-domain Question answering, QA)
我々は,特殊な設計のアセスメントモジュールを組み込むことで,LLMベースのRAGシステムのための新しいアーキテクチャを開発する。
オープンドメインの4つのQAタスクの実験では、REARは以前の競争力のあるRAGアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-02-27T13:22:51Z) - Retrieval-Augmented Generation for Large Language Models: A Survey [17.82361213043507]
大きな言語モデル(LLM)には印象的な能力があるが、幻覚のような課題に直面している。
Retrieval-Augmented Generation (RAG) は,外部データベースからの知識を取り入れた,有望なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-18T07:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。