Fully optimised variational simulation of a dynamical quantum phase transition on a trapped-ion quantum computer
- URL: http://arxiv.org/abs/2502.06961v1
- Date: Mon, 10 Feb 2025 19:01:28 GMT
- Title: Fully optimised variational simulation of a dynamical quantum phase transition on a trapped-ion quantum computer
- Authors: Lesley Gover, Vinul Wimalaweera, Fariha Azad, Matthew DeCross, Michael Foss-Feig, Andrew G. Green,
- Abstract summary: We time-evolve a translationally invariant quantum state on the Quantinuum H1-1 trapped-ion quantum processor.
This physics requires a delicate cancellation of phases in the many-body wavefunction and presents a tough challenge for current quantum devices.
Our results demonstrate the feasibility of variational quantum time-evolution and reveal a hitherto hidden simplicity of the evolution of the transverse-field Ising model.
- Score: 0.039583175274885335
- License:
- Abstract: We time-evolve a translationally invariant quantum state on the Quantinuum H1-1 trapped-ion quantum processor, studying the dynamical quantum phase transition of the transverse field Ising model. This physics requires a delicate cancellation of phases in the many-body wavefunction and presents a tough challenge for current quantum devices. We follow the dynamics using a quantum circuit matrix product state ansatz, optimised for the time-evolution using a fidelity cost function. Sampling costs are mitigated by using the measured values of this circuit as stochastic corrections to a simple classical extrapolation of the ansatz parameters. Our results demonstrate the feasibility of variational quantum time-evolution and reveal a hitherto hidden simplicity of the evolution of the transverse-field Ising model through the dynamical quantum phase transition.
Related papers
- Quantum Simulation for Dynamical Transition Rates in Open Quantum Systems [0.0]
We introduce a novel and efficient quantum simulation method to compute dynamical transition rates in Markovian open quantum systems.
Our new approach holds the potential to surpass the bottlenecks of current quantum chemical research.
arXiv Detail & Related papers (2024-12-23T02:53:05Z) - Quantum-classical simulation of quantum field theory by quantum circuit
learning [0.0]
We employ quantum circuit learning to simulate quantum field theories (QFTs)
We find that our predictions closely align with the results of rigorous classical calculations.
This hybrid quantum-classical approach illustrates the feasibility of efficiently simulating large-scale QFTs on cutting-edge quantum devices.
arXiv Detail & Related papers (2023-11-27T20:18:39Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Simulating groundstate and dynamical quantum phase transitions on a
superconducting quantum computer [0.11744028458220425]
We simulate the groundstate of the quantum Ising model through its quantum critical point on a superconducting quantum device.
Our approach avoids finite-size scaling effects by using sequential quantum circuits inspired by infinite matrix product states.
arXiv Detail & Related papers (2022-05-25T18:05:53Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Measurement-induced entanglement phase transitions in variational
quantum circuits [0.4499833362998487]
Variational quantum algorithms (VQAs) classically optimize a parametrized quantum circuit to solve a computational task.
We study the entanglement transition in variational quantum circuits endowed with intermediate projective measurements.
Our work paves an avenue for greatly improving the trainability of quantum circuits by incorporating intermediate measurement protocols in currently available quantum hardware.
arXiv Detail & Related papers (2021-11-15T19:00:28Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Detecting dynamical quantum phase transition via out-of-time-order
correlations in a solid-state quantum simulator [12.059058714600607]
We develop and experimentally demonstrate that out-of-time-order correlators can be used to detect nonoequilibrium phase transitions in the transverse field Ising model.
Further applications of this protocol could enable studies other of exotic phenomena such as many body localization, and tests of the holographic duality between quantum and gravitational systems.
arXiv Detail & Related papers (2020-01-17T14:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.