論文の概要: On the use of neural networks for the structural characterization of polymeric porous materials
- arxiv url: http://arxiv.org/abs/2502.07076v1
- Date: Sat, 25 Jan 2025 13:17:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-16 05:04:34.565425
- Title: On the use of neural networks for the structural characterization of polymeric porous materials
- Title(参考訳): 高分子多孔質材料の構造解析におけるニューラルネットワークの利用について
- Authors: Jorge Torre, Suset Barroso-Solares, M. A. Rodríguez-Pérez, Javier Pinto,
- Abstract要約: 本稿では多孔質材料の構造解析のための深層学習技術について述べる。
複数の微調整されたMask R CNNモデルを、4つの異なるデータセットで異なるトレーニング構成を用いて評価する。
結果は、このツールが非常に正確な結果を提供することができることを証明している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The structural characterization is an essential task in the study of porous materials. To achieve reliable results, it requires to evaluate images with hundreds of pores. Current methods require large time amounts and are subjected to human errors and subjectivity. A completely automatic tool would not only speed up the process but also enhance its reliability and reproducibility. Therefore, the main objective of this article is the study of a deep-learning-based technique for the structural characterization of porous materials, through the use of a convolutional neural network. Several fine-tuned Mask R CNN models are evaluated using different training configurations in four separate datasets each composed of numerous SEM images of diverse polymeric porous materials: closed-pore extruded polystyrene (XPS), polyurethane (PU), and poly(methyl methacrylate) (PMMA), and open-pore PU. Results prove the tool capable of providing very accurate results, equivalent to those achieved by time consuming manual methods, in a matter of seconds.
- Abstract(参考訳): 構造的特徴は多孔質材料の研究に欠かせない課題である。
信頼性の高い結果を得るためには、数百の孔で画像を評価する必要がある。
現在の方法は大量の時間を必要とし、人間の誤りや主観性が伴う。
完全に自動化されたツールは、プロセスをスピードアップするだけでなく、信頼性と再現性を向上する。
そこで本論文の主な目的は,畳み込みニューラルネットワークを用いて多孔質材料の構造解析を行う深層学習技術の研究である。
複数の微調整Mask R CNNモデルについて, 各種高分子多孔質材料のSEM画像からなる4つの異なるデータセットを用いて, 異なるトレーニング構成を用いて評価した。
結果は、このツールが非常に正確な結果を提供することができることを証明している。
関連論文リスト
- Compositional Representation of Polymorphic Crystalline Materials [56.80318252233511]
PCRLは,構成の確率論的モデリングを用いて,利用可能な構造情報から多型を抽出する手法である。
16のデータセットに対する広範囲な評価は、構成表現の学習におけるPCRLの有効性を示す。
論文 参考訳(メタデータ) (2023-11-17T20:34:28Z) - Automatically Predict Material Properties with Microscopic Image Example
Polymer Compatibility [94.40113383292139]
機械学習を用いたコンピュータ画像認識は、人工判定の欠陥を補うことができる。
畳み込みニューラルネットワークとトランスファーラーニング手法を用いて、自動誤認認識を実現する。
提案手法は, 各種材料の微細構造と物性の定量的評価に広く応用できる。
論文 参考訳(メタデータ) (2023-03-22T07:51:32Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - A Survey on Evaluation Metrics for Synthetic Material Micro-Structure
Images from Generative Models [0.0]
合成微細構造画像の評価は、機械学習と材料科学の研究が共に発展するにつれ、新たな問題となっている。
本研究では, グラフェン強化ポリウレタン発泡体の走査電子顕微鏡(SEM)像について検討した。
論文 参考訳(メタデータ) (2022-11-03T15:17:42Z) - Recognition of Defective Mineral Wool Using Pruned ResNet Models [88.24021148516319]
我々はミネラルウールのための視覚品質管理システムを開発した。
ウール標本のX線画像が収集され、欠陥および非欠陥サンプルのトレーニングセットが作成された。
我々は98%以上の精度のモデルを得たが、同社の現在の手順と比較すると、20%以上の欠陥製品を認識することができる。
論文 参考訳(メタデータ) (2022-11-01T13:58:02Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Predicting Mechanical Properties from Microstructure Images in
Fiber-reinforced Polymers using Convolutional Neural Networks [8.023452876968694]
本稿では,繊維強化ポリマー試料の2次元分割トモグラフィ画像の応力場予測のために,ScressNetから修正した完全畳み込みニューラルネットワークについて検討する。
トレーニングされたモデルは、通常のラップトップ上で1回のフォワードパスで数秒以内に予測を行うことができ、ハイパフォーマンスなコンピューティングクラスタ上で完全な有限要素シミュレーションを実行するのに92.5時間かかる。
論文 参考訳(メタデータ) (2020-10-07T22:15:48Z) - Machine learning with persistent homology and chemical word embeddings
improves prediction accuracy and interpretability in metal-organic frameworks [0.07874708385247352]
材料の構造と化学の複雑な表現をキャプチャする記述子を自動的に生成するエンド・ツー・エンドの機械学習モデルを提案する。
物質系から直接、幾何学的および化学的情報をカプセル化する。
提案手法は, 対象物間での精度, 転送可能性の両面において, 一般的に用いられている手作業による特徴量から構築したモデルに比べ, かなり改善されている。
論文 参考訳(メタデータ) (2020-10-01T16:31:46Z) - DeePore: a deep learning workflow for rapid and comprehensive
characterization of porous materials [0.0]
DeePoreは、マイクロトモグラフィー画像に基づく幅広い多孔質材料特性を推定するためのディープラーニングワークフローである。
我々は,2563ボクセルの大きさの多孔質ジオマテリアルの半実3次元構造を17700個生成し,各試料の物理特性を,対応する細孔ネットワークモデル上の物理シミュレーションを用いて計算した。
CNNは、このデータセットに基づいて、多孔質材料のいくつかの形態的、水圧的、電気的、機械的特性を1秒で推定するように訓練されている。
論文 参考訳(メタデータ) (2020-05-03T08:46:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。