論文の概要: A Survey on Evaluation Metrics for Synthetic Material Micro-Structure
Images from Generative Models
- arxiv url: http://arxiv.org/abs/2211.09727v1
- Date: Thu, 3 Nov 2022 15:17:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 13:40:18.581084
- Title: A Survey on Evaluation Metrics for Synthetic Material Micro-Structure
Images from Generative Models
- Title(参考訳): 生成モデルを用いた合成材料マイクロ構造画像の評価指標の検討
- Authors: Devesh Shah (1), Anirudh Suresh (2), Alemayehu Admasu (1), Devesh
Upadhyay (1), Kalyanmoy Deb (2) ((1) Ford Motor Company, (2) Michigan State
University)
- Abstract要約: 合成微細構造画像の評価は、機械学習と材料科学の研究が共に発展するにつれ、新たな問題となっている。
本研究では, グラフェン強化ポリウレタン発泡体の走査電子顕微鏡(SEM)像について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The evaluation of synthetic micro-structure images is an emerging problem as
machine learning and materials science research have evolved together. Typical
state of the art methods in evaluating synthetic images from generative models
have relied on the Fr\'echet Inception Distance. However, this and other
similar methods, are limited in the materials domain due to both the unique
features that characterize physically accurate micro-structures and limited
dataset sizes. In this study we evaluate a variety of methods on scanning
electron microscope (SEM) images of graphene-reinforced polyurethane foams. The
primary objective of this paper is to report our findings with regards to the
shortcomings of existing methods so as to encourage the machine learning
community to consider enhancements in metrics for assessing quality of
synthetic images in the material science domain.
- Abstract(参考訳): 合成微細構造画像の評価は、機械学習と材料科学の研究が共に発展するにつれ、新たな問題となっている。
生成モデルから合成画像を評価する技術手法の典型例はFr'echet Inception Distanceに依存している。
しかし、これらや他の類似の手法は、物理的に正確なマイクロ構造と限られたデータセットサイズを特徴付けるユニークな特徴により、材料領域において制限されている。
本研究では, グラフェン強化ポリウレタン発泡体の走査電子顕微鏡(SEM)像について検討した。
本研究の目的は,物質科学領域における合成画像の品質評価のための指標の強化を検討することを目的として,既存の手法の欠点に関する知見を報告することである。
関連論文リスト
- Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
本稿では,異なる標準化手法,(2)グラフ作成戦略,(3)補助的なタスクが性能,拡張性,対称性の強制に与える影響に焦点をあてる。
本研究の目的は,分子モデリングタスクに最適なモデリングコンポーネントの選択を研究者に案内することである。
論文 参考訳(メタデータ) (2024-07-11T09:04:12Z) - Multimodal Deep Learning for Scientific Imaging Interpretation [0.0]
本研究では,SEM(Scanning Electron Microscopy)画像と人間のような相互作用を言語的にエミュレートし,評価するための新しい手法を提案する。
本稿では,ピアレビュー記事から収集したテキストデータとビジュアルデータの両方から洞察を抽出する。
我々のモデル (GlassLLaVA) は, 正確な解釈, 重要な特徴の同定, 未確認のSEM画像の欠陥の検出に優れる。
論文 参考訳(メタデータ) (2023-09-21T20:09:22Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
本稿では,自由視点画像の合成に有効なフレームワークであるGeneralizable Model-based Neural Radiance Fieldsを提案する。
具体的には、多視点2D画像からの出現コードを幾何学的プロキシに登録するための幾何学誘導型アテンション機構を提案する。
論文 参考訳(メタデータ) (2023-03-24T03:32:02Z) - Automatically Predict Material Properties with Microscopic Image Example
Polymer Compatibility [94.40113383292139]
機械学習を用いたコンピュータ画像認識は、人工判定の欠陥を補うことができる。
畳み込みニューラルネットワークとトランスファーラーニング手法を用いて、自動誤認認識を実現する。
提案手法は, 各種材料の微細構造と物性の定量的評価に広く応用できる。
論文 参考訳(メタデータ) (2023-03-22T07:51:32Z) - Parameters, Properties, and Process: Conditional Neural Generation of
Realistic SEM Imagery Towards ML-assisted Advanced Manufacturing [1.5234614694413722]
我々は,条件付き生成対向ネットワーク(GAN)を走査型電子顕微鏡(SEM)画像に適用することにより,先行研究を構築した。
我々は, テンパと実験パラメータ, 材料特性を条件とした現実的な画像を生成する。
この研究は、製造プロセスを理解するための根本的に新しいアプローチの技術的バックボーンを形成する。
論文 参考訳(メタデータ) (2023-01-13T00:48:39Z) - Application of the YOLOv5 Model for the Detection of Microobjects in the
Marine Environment [101.18253437732933]
海洋環境における微小物体の自動検出と認識の問題を解決するためのYOLOV5機械学習モデルの有効性について検討した。
論文 参考訳(メタデータ) (2022-11-28T10:58:50Z) - Computer Vision Methods for the Microstructural Analysis of Materials:
The State-of-the-art and Future Perspectives [0.4595477728342621]
本稿では, マルチスケール画像解析に応用された最先端CNN技術について概説する。
材料科学研究へのこれらの手法の適用に関する主な課題を同定する。
論文 参考訳(メタデータ) (2022-07-29T15:27:47Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Image-driven discriminative and generative machine learning algorithms
for establishing microstructure-processing relationships [0.49259062564301753]
我々は、画像認識、キャラクタリゼーション、予測機能構築のための改良された機械学習アプローチを開発する。
核燃料として現在開発中の二元合金(ウラニウムモリブデン)について検討した。
F1スコア95.1%は10の異なる熱力学的材料処理条件に対応するマイクログラフを区別するために達成された。
論文 参考訳(メタデータ) (2020-07-27T10:36:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。