Majorana quasiparticles in atomic spin chains on superconductors
- URL: http://arxiv.org/abs/2502.07089v1
- Date: Mon, 10 Feb 2025 22:30:33 GMT
- Title: Majorana quasiparticles in atomic spin chains on superconductors
- Authors: Stephan Rachel, Roland Wiesendanger,
- Abstract summary: Majorana quasiparticles offer exciting potential applications in topological quantum computation.
Motivated by theoretical predictions about possible realizations of Majorana quasiparticles as zero-energy modes at boundaries of topological superconductors.
Bottom-up atom-by-atom fabrication of disorder-free atomic spin chains on atomically clean superconducting substrates has recently allowed deep insight into the emergence of topological sub-gap Shiba bands.
- Score: 0.0
- License:
- Abstract: For the past decade, Majorana quasiparticles have become one of the hot topics in condensed matter research. Besides the fundamental interest in the realization of particles being their own antiparticles, going back to basic concepts of elementary particle physics, Majorana quasiparticles in condensed matter systems offer exciting potential applications in topological quantum computation due to their non-Abelian quantum exchange statistics. Motivated by theoretical predictions about possible realizations of Majorana quasiparticles as zero-energy modes at boundaries of topological superconductors, experimental efforts have focussed in particular on quasi-one-dimensional semiconductor-superconductor and magnet-superconductor hybrid systems. However, an unambiguous proof of the existence of Majorana quasiparticles is still challenging and requires considerable improvements in materials science, atomic-scale characterization and control of interface quality, as well as complementary approaches of detecting various facets of Majorana quasiparticles. Bottom-up atom-by-atom fabrication of disorder-free atomic spin chains on atomically clean superconducting substrates has recently allowed deep insight into the emergence of topological sub-gap Shiba bands and associated Majorana states from the level of individual atoms up to extended chains, thereby offering the possibility for critical tests of Majorana physics in disorder-free model-type 1D hybrid systems.
Related papers
- Exploring nontrivial topology at quantum criticality in a superconducting processor [23.278631632470628]
We present an experimental exploration of the critical cluster Ising model by preparing its low-lying critical states on a superconducting processor with up to $100$ qubits.
We develop an efficient method to probe the boundary $g$-function based on prepared low-energy states, which allows us to uniquely identify the nontrivial topology of the critical systems under study.
Our results demonstrate the low-lying critical states as useful quantum resources for investigating the interplay between topology and quantum criticality.
arXiv Detail & Related papers (2025-01-08T18:39:44Z) - Construction of topological quantum magnets from atomic spins on surfaces [6.884621917906393]
We demonstrate topological quantum Heisenberg spin lattices, engineered with spin chains and two-dimensional spin arrays in a scanning tunnelling microscope (STM)
Our results provide an important bottom-up approach to simulating exotic quantum many-body phases of interacting spins.
arXiv Detail & Related papers (2024-03-21T05:41:20Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Majorana nanowires for topological quantum computation [0.0]
Majorana bound states are quasiparticle excitations localized at the boundaries of a nontrivial superconductor.
They are robust against local perturbations and, in an ideal environment, free from decoherence.
This tutorial may serve as a pedagogical and relatively self-contained introduction for graduate students and researchers new to the field.
arXiv Detail & Related papers (2022-06-29T18:00:04Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Harnessing the Quantum Behavior of Spins on Surfaces [5.934931737701265]
Single atoms and molecules on surfaces are investigated by physicists, chemists, and material scientists in search of novel electronic and magnetic functionalities.
In 2015, it was first clearly demonstrated that individual spins on a surface can be coherently controlled and read out in an all-electrical fashion.
This review aims to illustrate the essential ingredients that allow the quantum operations of single spins on surfaces.
arXiv Detail & Related papers (2021-12-29T09:47:06Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Quantum electromechanics with levitated nanoparticles [0.0]
In contrast to atomic systems with discrete transitions, nanoparticles exhibit a practically continuous absorption spectrum.
We propose a pulsed scheme for the generation and read-out of motional quantum superpositions and entanglement between several levitated nanoparticles.
arXiv Detail & Related papers (2020-05-28T13:52:42Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.