3D Graph Attention Networks for High Fidelity Pediatric Glioma Segmentation
- URL: http://arxiv.org/abs/2412.06743v1
- Date: Mon, 09 Dec 2024 18:36:36 GMT
- Title: 3D Graph Attention Networks for High Fidelity Pediatric Glioma Segmentation
- Authors: Harish Thangaraj, Diya Katariya, Eshaan Joshi, Sangeetha N,
- Abstract summary: This study presents a novel 3D UNet architecture with a spatial attention mechanism tailored for automated segmentation of pediatric gliomas.
Using the BraTS pediatric glioma dataset with multiparametric MRI data, the proposed model captures multi-scale features and selectively attends to tumor relevant regions.
The model's performance is quantitatively evaluated using the Dice similarity coefficient and HD95, demonstrating improved delineation of complex glioma structured.
- Score: 0.0
- License:
- Abstract: Pediatric brain tumors, particularly gliomas, represent a significant cause of cancer related mortality in children with complex infiltrative growth patterns that complicate treatment. Early, accurate segmentation of these tumors in neuroimaging data is crucial for effective diagnosis and intervention planning. This study presents a novel 3D UNet architecture with a spatial attention mechanism tailored for automated segmentation of pediatric gliomas. Using the BraTS pediatric glioma dataset with multiparametric MRI data, the proposed model captures multi-scale features and selectively attends to tumor relevant regions, enhancing segmentation precision and reducing interference from surrounding tissue. The model's performance is quantitatively evaluated using the Dice similarity coefficient and HD95, demonstrating improved delineation of complex glioma structured. This approach offers a promising advancement in automating pediatric glioma segmentation, with the potential to improve clinical decision making and outcomes.
Related papers
- Is Long Range Sequential Modeling Necessary For Colorectal Tumor Segmentation? [3.4031606383293154]
Long-range volumetric sequence modeling mechanisms, such as Transformers and Mamba, have gained attention for their capacity to achieve high accuracy in 3D medical image segmentation.
We evaluate the effectiveness of these global token modeling techniques by pitting them against our proposed MambaOutUNet.
Our findings suggest that robust local token interactions can outperform long-range modeling techniques in cases where the region of interest is small and anatomically complex.
arXiv Detail & Related papers (2025-02-10T23:24:01Z) - Ensemble Learning and 3D Pix2Pix for Comprehensive Brain Tumor Analysis in Multimodal MRI [2.104687387907779]
This study presents an integrated approach leveraging the strengths of ensemble learning with hybrid transformer models and convolutional neural networks (CNNs)
Our methodology combines robust tumor segmentation capabilities, utilizing axial attention and transformer encoders for enhanced spatial relationship modeling.
The results demonstrate outstanding performance, evidenced by quantitative evaluations such as the Dice Similarity Coefficient (DSC), Hausdorff Distance (HD95) for segmentation, and Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Mean-Square Error (MSE) for inpainting.
arXiv Detail & Related papers (2024-12-16T15:10:53Z) - Enhanced MRI Representation via Cross-series Masking [48.09478307927716]
Cross-Series Masking (CSM) Strategy for effectively learning MRI representation in a self-supervised manner.
Method achieves state-of-the-art performance on both public and in-house datasets.
arXiv Detail & Related papers (2024-12-10T10:32:09Z) - Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
This study introduces a novel data augmentation technique, aimed at automating spine tumor segmentation and localization through AI approaches.
A Convolutional Neural Network (CNN) architecture is employed for tumor classification. 3D vertebral segmentation and labeling techniques are used to help pinpoint the exact location of the tumors in the lumbar spine.
Results indicate a remarkable performance, with 99% accuracy for tumor segmentation, 98% accuracy for tumor classification, and 99% accuracy for tumor localization achieved with the proposed approach.
arXiv Detail & Related papers (2024-05-07T05:55:50Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Fully Automated Tumor Segmentation for Brain MRI data using Multiplanner
UNet [0.29998889086656577]
This study evaluates the efficacy of the Multi-Planner U-Net (MPUnet) approach in segmenting different tumor subregions across three challenging datasets.
arXiv Detail & Related papers (2024-01-12T10:46:19Z) - Segmentation-based Assessment of Tumor-Vessel Involvement for Surgical
Resectability Prediction of Pancreatic Ductal Adenocarcinoma [1.880228463170355]
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options.
This research proposes a workflow and deep learning-based segmentation models to automatically assess tumor-vessel involvement.
arXiv Detail & Related papers (2023-10-01T10:39:38Z) - CancerUniT: Towards a Single Unified Model for Effective Detection,
Segmentation, and Diagnosis of Eight Major Cancers Using a Large Collection
of CT Scans [45.83431075462771]
Human readers or radiologists routinely perform full-body multi-organ multi-disease detection and diagnosis in clinical practice.
Most medical AI systems are built to focus on single organs with a narrow list of a few diseases.
CancerUniT is a query-based Mask Transformer model with the output of multi-tumor prediction.
arXiv Detail & Related papers (2023-01-28T20:09:34Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
We show improved anomaly segmentation performance and the general capability to obtain much more crisp reconstructions of input data at native resolution.
The modeling of the laplacian pyramid further enables the delineation and aggregation of lesions at multiple scales.
arXiv Detail & Related papers (2020-06-23T09:20:42Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.