論文の概要: Structural Reformation of Large Language Model Neuron Encapsulation for Divergent Information Aggregation
- arxiv url: http://arxiv.org/abs/2502.07124v1
- Date: Mon, 10 Feb 2025 23:37:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:08:15.781991
- Title: Structural Reformation of Large Language Model Neuron Encapsulation for Divergent Information Aggregation
- Title(参考訳): 分岐情報集約のための大言語モデルニューロンカプセル化の構造再構成
- Authors: Denis Bakushev, Gideon Boultinghouse, Harriet Oppenheimer, Sebastian Gillingwater, Valentina Ashington, Wilfred Stanborough,
- Abstract要約: 構造化ニューロンカプセル化(Structured Neuron encapsulation)は、情報のより効果的な集約と特殊化を可能にするモジュラーフレームワークを導入する。
このフレームワークによって修正されたモデルでは、パープレキシティスコアの改善、語彙の変動性の向上、論理的推論における一貫性の向上が示された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Structured neuron encapsulation introduces a modular framework that enables more effective aggregation and specialization of information within deep learning architectures. A model modified through this framework demonstrated improved perplexity scores, greater lexical variability, and enhanced consistency in logical reasoning, suggesting that structured parameter distribution contributes to more efficient language representation. Statistical analyses of generated text highlighted a wider range of sentence structures and reduced redundancy in token selection, indicating that encapsulation fosters more adaptable language generation. A detailed evaluation of attention weight distributions revealed that the experimental model exhibited greater divergence in cross-layer activations, supporting the hypothesis that encapsulated neurons assume specialized processing roles. Logical consistency assessments further demonstrated that modular architectures mitigate contradictory outputs, reducing internal conflicts in inferred relationships between linguistic constructs. Computational trade-offs were analyzed, with results showing a minor increase in processing overhead, though improvements in parameter efficiency and structured decision-making compensated for the additional complexity. The mathematical formulation of the encapsulation mechanism confirmed that modular aggregation maintains stable convergence properties while promoting distinct functional roles for different neuron clusters.
- Abstract(参考訳): 構造化ニューロンカプセル化(Structured Neuron encapsulation)は、ディープラーニングアーキテクチャ内の情報のより効果的な集約と特殊化を可能にするモジュラーフレームワークを導入する。
このフレームワークによって修正されたモデルでは、パープレキシティスコアの改善、語彙の可変性の向上、論理的推論における一貫性の向上が示され、構造化されたパラメータ分布がより効率的な言語表現に寄与することが示唆された。
生成されたテキストの統計的分析では、より広い範囲の文構造が強調され、トークン選択の冗長性が低下し、カプセル化がより適応可能な言語生成を促進することが示唆された。
注意重み分布の詳細な評価により、実験モデルが層間活性化においてより大きなばらつきを示し、カプセル化されたニューロンが特別な処理の役割を担っているという仮説を支持した。
論理的整合性評価は、モジュラーアーキテクチャが矛盾した出力を緩和し、言語構造間の推論された関係における内部の衝突を減らすことをさらに証明した。
計算的トレードオフを解析したところ,処理オーバーヘッドは小さめに増加したが,パラメータ効率や構造的意思決定の改善は複雑化を補った。
カプセル化機構の数学的定式化により、モジュラーアグリゲーションは安定な収束特性を維持しつつ、異なるニューロンクラスターの異なる機能的役割を促進できることが確認された。
関連論文リスト
- Statistical Coherence Alignment for Large Language Model Representation Learning Through Tensor Field Convergence [0.0]
表現学習は、言語の統計的特性を捉えるために、内部埋め込みを構築する上で中心的な役割を果たす。
コヒーレンスアライメントはテンソル場収束を通じて構造化トークン表現を強制する手法として導入された。
経験的評価は、コヒーレンス制約の適用によりパープレキシティが向上し、分類精度が向上し、稀な単語の埋め込みが洗練されることを示している。
論文 参考訳(メタデータ) (2025-02-13T23:24:25Z) - Contextual Subspace Manifold Projection for Structural Refinement of Large Language Model Representations [0.0]
ディープ・ニューラル・アーキテクチャの内部表現は言語構造の高次元抽象化を符号化する。
本稿では,制御された部分空間制約によりトークン埋め込みを選択的に再構成する構造的精細化手法を提案する。
実験により、構造的介入により異方性が減少し、表現のコンパクト性が改善された。
論文 参考訳(メタデータ) (2025-02-12T00:00:37Z) - Latent Lexical Projection in Large Language Models: A Novel Approach to Implicit Representation Refinement [0.0]
ラテントレキシカル射影 (LLP) は、構造化された空間からラテント空間への変換を通じて、レキシカル表現を洗練するために導入された。
LLPは既存の言語モデルアーキテクチャに最適化されたプロジェクション機構を統合する。
評価は、パープレキシティの低下とBLEUスコアの上昇を示し、予測精度と流布率の改善を示唆している。
論文 参考訳(メタデータ) (2025-02-03T23:18:53Z) - Structural Embedding Projection for Contextual Large Language Model Inference [0.0]
構造化埋め込み変換は、言語モデル推論の効率性と一貫性を高めるための有望なアプローチを提供する。
構造埋め込み射影 (Structure Embedding Projection, SEP) の数学的定式化により、埋め込み空間は構造化された文脈関係を捉えることができる。
語彙の多様性に対するSEPの影響は、埋め込み修飾がモデルの語彙使用に影響を与えることを示唆している。
論文 参考訳(メタデータ) (2025-01-31T00:46:21Z) - Neural Contextual Reinforcement Framework for Logical Structure Language Generation [1.08272575635683]
このフレームワークはカスタム報酬関数と動的コンテキストアライメント機構を統合している。
論理構造やセマンティックフローに対する人間の期待と密接に一致した出力を生成する。
さまざまなモデルサイズにわたるノイズの多い入力データとスケーラビリティを扱う上で、堅牢性を示す。
論文 参考訳(メタデータ) (2025-01-20T11:34:28Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - Equivariant Transduction through Invariant Alignment [71.45263447328374]
グループ内ハードアライメント機構を組み込んだ,新しいグループ同変アーキテクチャを提案する。
我々のネットワーク構造は、既存のグループ同変アプローチよりも強い同変特性を発達させることができる。
また、SCANタスクにおいて、従来のグループ同変ネットワークよりも経験的に優れていたことが判明した。
論文 参考訳(メタデータ) (2022-09-22T11:19:45Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - GroupBERT: Enhanced Transformer Architecture with Efficient Grouped
Structures [57.46093180685175]
トランスフォーマー層の構造を改良し,より効率的なアーキテクチャを実現する。
自己認識モジュールを補完する畳み込みモジュールを追加し、局所的およびグローバルな相互作用の学習を分離する。
得られたアーキテクチャを言語表現学習に適用し、異なるスケールのBERTモデルと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2021-06-10T15:41:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。