Fourier-enhanced Neural Networks For Systems Biology Applications
- URL: http://arxiv.org/abs/2502.07129v1
- Date: Mon, 10 Feb 2025 23:48:10 GMT
- Title: Fourier-enhanced Neural Networks For Systems Biology Applications
- Authors: Enze Xu, Minghan Chen,
- Abstract summary: In systems biology, differential equations are commonly used to model biological systems.
The emerging physics-informed neural network (PINN) has been proposed as a solution to this problem.
We propose the Fourier-enhanced Neural Networks for systems biology (SB-FNN) to address these issues.
- Score: 0.0
- License:
- Abstract: In the field of systems biology, differential equations are commonly used to model biological systems, but solving them for large-scale and complex systems can be computationally expensive. Recently, the integration of machine learning and mathematical modeling has offered new opportunities for scientific discoveries in biology and health. The emerging physics-informed neural network (PINN) has been proposed as a solution to this problem. However, PINN can be computationally expensive and unreliable for complex biological systems. To address these issues, we propose the Fourier-enhanced Neural Networks for systems biology (SB-FNN). SB-FNN uses an embedded Fourier neural network with an adaptive activation function and a cyclic penalty function to optimize the prediction of biological dynamics, particularly for biological systems that exhibit oscillatory patterns. Experimental results demonstrate that SB-FNN achieves better performance and is more efficient than PINN for handling complex biological models. Experimental results on cellular and population models demonstrate that SB-FNN outperforms PINN in both accuracy and efficiency, making it a promising alternative approach for handling complex biological models. The proposed method achieved better performance on six biological models and is expected to replace PINN as the most advanced method in systems biology.
Related papers
- Splitting physics-informed neural networks for inferring the dynamics of
integer- and fractional-order neuron models [0.0]
We introduce a new approach for solving forward systems of differential equations using a combination of splitting methods and physics-informed neural networks (PINNs)
The proposed method, splitting PINN, effectively addresses the challenge of applying PINNs to forward dynamical systems.
arXiv Detail & Related papers (2023-04-26T00:11:00Z) - Symbiosis of an artificial neural network and models of biological
neurons: training and testing [0.0]
We show the possibility of creating and identifying the features of an artificial neural network (ANN) which consists of mathematical models of biological neurons.
The FitzHugh--Nagumo (FHN) system is used as an example of model demonstrating simplified neuron activity.
arXiv Detail & Related papers (2023-02-03T10:06:54Z) - Simple and complex spiking neurons: perspectives and analysis in a
simple STDP scenario [0.7829352305480283]
Spiking neural networks (SNNs) are inspired by biology and neuroscience to create fast and efficient learning systems.
This work considers various neuron models in the literature and then selects computational neuron models that are single-variable, efficient, and display different types of complexities.
We make a comparative study of three simple I&F neuron models, namely the LIF, the Quadratic I&F (QIF) and the Exponential I&F (EIF), to understand whether the use of more complex models increases the performance of the system.
arXiv Detail & Related papers (2022-06-28T10:01:51Z) - Linear Leaky-Integrate-and-Fire Neuron Model Based Spiking Neural
Networks and Its Mapping Relationship to Deep Neural Networks [7.840247953745616]
Spiking neural networks (SNNs) are brain-inspired machine learning algorithms with merits such as biological plausibility and unsupervised learning capability.
This paper establishes a precise mathematical mapping between the biological parameters of the Linear Leaky-Integrate-and-Fire model (LIF)/SNNs and the parameters of ReLU-AN/Deep Neural Networks (DNNs)
arXiv Detail & Related papers (2022-05-31T17:02:26Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - A multi-agent model for growing spiking neural networks [0.0]
This project has explored rules for growing the connections between the neurons in Spiking Neural Networks as a learning mechanism.
Results in a simulation environment showed that for a given set of parameters it is possible to reach topologies that reproduce the tested functions.
This project also opens the door to the usage of techniques like genetic algorithms for obtaining the best suited values for the model parameters.
arXiv Detail & Related papers (2020-09-21T15:11:29Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
Recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs)
In this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the Synaptic Plasticity paradigm that poses the essential learning theory in biological neurons.
Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs.
arXiv Detail & Related papers (2020-08-21T19:03:23Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z) - Flexible Transmitter Network [84.90891046882213]
Current neural networks are mostly built upon the MP model, which usually formulates the neuron as executing an activation function on the real-valued weighted aggregation of signals received from other neurons.
We propose the Flexible Transmitter (FT) model, a novel bio-plausible neuron model with flexible synaptic plasticity.
We present the Flexible Transmitter Network (FTNet), which is built on the most common fully-connected feed-forward architecture.
arXiv Detail & Related papers (2020-04-08T06:55:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.