Quantifying Quantumness in (A)dS spacetimes with Unruh-DeWitt Detector
- URL: http://arxiv.org/abs/2502.07167v1
- Date: Tue, 11 Feb 2025 01:23:57 GMT
- Title: Quantifying Quantumness in (A)dS spacetimes with Unruh-DeWitt Detector
- Authors: Li-Juan Li, Xue-Ke Song, Liu Ye, Dong Wang,
- Abstract summary: This work focuses on the theoretical feasibility of probing quantum properties in de Sitter (dS) and Anti-de Sitter (AdS) spacetimes via detectors.
By employing the Unruh-DeWitt detector coupled with a massless scalar field, quantum uncertainty and quantum coherence in both dS and AdS spacetimes are investigated.
- Score: 4.378051693716982
- License:
- Abstract: Probing quantumness in curved spacetime is regarded as one of fundamental and important topics in the framework of relativistic quantum information. In this work, we focus on the theoretical feasibility of probing quantum properties in de Sitter (dS) and Anti-de Sitter (AdS) spacetimes via detectors. By employing the Unruh-DeWitt detector coupled with a massless scalar field, which is treated as an open system, quantum uncertainty and quantum coherence in both dS and AdS spacetimes are investigated. Our analysis reveals that the acceleration in dS spacetime and the boundary conditions in AdS spacetime significantly impact the detector's evolution in the initial stage. Notably, both of the uncertainty and coherence will oscillate with the initial state being in a superposition state, however the high temperature is able to suppress their oscillation. Interestingly, it is found that the constant values of the final uncertainty and coherence are identical as those in dS and AdS spacetimes, which are determined by the ratio of energy gap to temperature. Hence, the current exploration offers insight into quantumness in dS and AdS spacetimes, and might be helpful to facilitate the curved-spacetime-based quantum information processing.
Related papers
- Probing quantum many-body dynamics using subsystem Loschmidt echos [39.34101719951107]
We experimentally investigate the subsystem Loschmidt echo, a quasi-local observable that captures key features of the Loschmidt echo.
In the short-time regime, we observe a dynamical quantum phase transition arising from genuine higher-order correlations.
In the long-time regime, the subsystem Loschmidt echo allows us to quantitatively determine the effective dimension and structure of the accessible Hilbert space in the thermodynamic limit.
arXiv Detail & Related papers (2025-01-28T14:51:37Z) - Generation of quantum entanglement in superposed diamond spacetime [2.3560462017582298]
We present a framework for the superposition causal diamond spacetime and analyze the behavior of quantum entanglement influenced by the spacetime superposition.
Our results suggest that the characteristics of spacetime superposition can serve as valuable resources for performing quantum information processing tasks.
arXiv Detail & Related papers (2024-12-31T03:32:40Z) - Note on the local calculation of decoherence of quantum superpositions in de Sitter spacetime [2.212209097253224]
We study the decoherence effect of quantum superposition in de Sitter spacetime due to the presence of the cosmological horizon.
We compute the entangling particle numbers in scalar field, electromagnetic field, and gravitational field scenarios.
arXiv Detail & Related papers (2024-12-31T01:30:04Z) - Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Quantum superpositions of Minkowski spacetime [0.0]
"Spacetime superpositions" are quantum superpositions of different spacetimes not related by a global coordinate transformation.
We consider the quantum-gravitational effects produced by superpositions of periodically identified Minkowski spacetime.
We show that the detector's response exhibits discontinuous resonances at rational ratios of the superposed periodic length scale.
arXiv Detail & Related papers (2022-08-25T13:31:05Z) - Schr\"odinger's cat for de Sitter spacetime [0.0]
We provide a new phenomenological description for the response of quantum probes on a spacetime manifold in quantum superpositions.
Applying this approach to static de Sitter space, we discover scenarios in which the effects produced by the quantum spacetime are operationally indistinguishable from those induced by superpositions of Rindler trajectories in Minkowski spacetime.
The distinguishability of such quantum spacetimes from superpositions of trajectories in flat space reduces to the equivalence or non-equivalence of the field correlations between the superposed amplitudes.
arXiv Detail & Related papers (2020-12-18T02:54:35Z) - Fisher information as a probe of spacetime structure: Relativistic
quantum metrology in (A)dS [0.0]
We study the relativistic quantum metrology of temperature in (3+1)-dimensional de Sitter and anti-de Sitter space.
Using Unruh-DeWitt detectors coupled to a massless scalar field as probes, we compute the Fisher information for estimating temperature.
We find that the phenomenology of the Fisher information in the two spacetimes can be unified, and analyze its dependence on temperature, detector energy gap, curvature, interaction time, and detector initial state.
arXiv Detail & Related papers (2020-12-15T19:08:18Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.