論文の概要: Evaluation for Regression Analyses on Evolving Data Streams
- arxiv url: http://arxiv.org/abs/2502.07213v1
- Date: Tue, 11 Feb 2025 03:12:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:09:20.191255
- Title: Evaluation for Regression Analyses on Evolving Data Streams
- Title(参考訳): 進化するデータストリームにおける回帰分析の評価
- Authors: Yibin Sun, Heitor Murilo Gomes, Bernhard Pfahringer, Albert Bifet,
- Abstract要約: 進化するデータストリームにおける回帰分析の課題について考察する。
本稿では,ストリーミング環境における回帰と予測間隔タスクの標準化された評価プロセスを提案する。
様々なドリフトタイプを合成できる革新的なドリフトシミュレーション戦略を導入する。
- 参考スコア(独自算出の注目度): 12.679233262168529
- License:
- Abstract: The paper explores the challenges of regression analysis in evolving data streams, an area that remains relatively underexplored compared to classification. We propose a standardized evaluation process for regression and prediction interval tasks in streaming contexts. Additionally, we introduce an innovative drift simulation strategy capable of synthesizing various drift types, including the less-studied incremental drift. Comprehensive experiments with state-of-the-art methods, conducted under the proposed process, validate the effectiveness and robustness of our approach.
- Abstract(参考訳): 本稿では,データストリームの進化における回帰分析の課題について考察する。
ストリーミング環境における回帰と予測間隔タスクの標準化された評価プロセスを提案する。
さらに,より研究の少ないインクリメンタルドリフトを含む様々なドリフトタイプを合成できる革新的なドリフトシミュレーション戦略を導入する。
提案プロセスで実施した最先端手法による総合的な実験により,提案手法の有効性とロバスト性を検証した。
関連論文リスト
- Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
既存のリウェイト戦略は主にグループレベルのデータの重要性に焦点を当てている。
動的・インスタンスレベルのデータ再重み付けのための新しいアルゴリズムを提案する。
当社のフレームワークでは,冗長データや非形式データを優先的に再重み付けする戦略を考案することが可能です。
論文 参考訳(メタデータ) (2025-02-10T17:57:15Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
オフライントレーニングとオンライン評価段階を含む,データ影響評価のための効率的なフレームワークを提案する。
提案手法は, 直接再学習法と比較して, プロセスの大幅な高速化を図りながら, 同等のモデル行動評価を実現する。
論文 参考訳(メタデータ) (2024-04-22T09:16:14Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
本稿では,制限付きラベル付きデータを用いたストリーミング環境の最適戦略を提案し,教師なし回帰のための適応手法を提案する。
提案手法は,初期ラベルのスパースセットを活用し,革新的なドリフト検出機構を導入する。
適応性を高めるために,Adaptive WINdowingアルゴリズムとRoot Mean Square Error (RMSE)に基づく誤り一般化アルゴリズムを統合する。
論文 参考訳(メタデータ) (2023-12-12T19:23:54Z) - Boosting Summarization with Normalizing Flows and Aggressive Training [6.6242828769801285]
FlowSUMは、Transformerベースの要約のための正規化フローベースの変分エンコーダデコーダフレームワークである。
本手法は,潜伏表現における意味情報の不足と,訓練中の後部崩壊の2つの主要な課題に対処する。
論文 参考訳(メタデータ) (2023-11-01T15:33:38Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
TRIAGEは回帰タスクに適した新しいデータキャラクタリゼーションフレームワークで、広範囲の回帰器と互換性がある。
TRIAGEは、共形予測分布を利用して、モデルに依存しないスコアリング方法、TRIAGEスコアを提供する。
TRIAGEの特徴は一貫性があり、複数の回帰設定においてデータの彫刻/フィルタリングによるパフォーマンス向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-10-29T10:31:59Z) - Errors-in-variables Fr\'echet Regression with Low-rank Covariate
Approximation [2.1756081703276]
Fr'echet回帰は、非ユークリッド応答変数を含む回帰分析のための有望なアプローチとして登場した。
提案手法は,大域的Fr'echet回帰と主成分回帰の概念を組み合わせて,回帰推定器の効率と精度を向上させることを目的とする。
論文 参考訳(メタデータ) (2023-05-16T08:37:54Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Vector-Valued Least-Squares Regression under Output Regularity
Assumptions [73.99064151691597]
最小二乗回帰問題を無限次元出力で解くために,還元ランク法を提案し,解析する。
提案手法の学習バウンダリを導出し、フルランク手法と比較して統計的性能の設定を改善する研究を行う。
論文 参考訳(メタデータ) (2022-11-16T15:07:00Z) - Better Modelling Out-of-Distribution Regression on Distributed Acoustic
Sensor Data Using Anchored Hidden State Mixup [0.7455546102930911]
トレーニングデータとテストデータの統計的分布が異なる状況への機械学習モデルの応用を一般化することは、複雑な問題であった。
本稿では,正規化の新たなペナルティを形成するために,多様体隠蔽状態の混合と観測類似性を利用したアンカー型回帰混合アルゴリズムを提案する。
提案手法の既存手法に対する一般化性能を広範囲に評価し,提案手法が最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2022-02-23T03:12:21Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z) - Counterfactual Learning of Stochastic Policies with Continuous Actions:
from Models to Offline Evaluation [41.21447375318793]
コンテクストとアクションを融合したカーネルを組み込んだモデリング戦略を導入する。
対実学習の最適化の側面が重要であることを実証的に示す。
実世界のログシステムにおけるオフラインポリシーの評価プロトコルを提案する。
論文 参考訳(メタデータ) (2020-04-22T07:42:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。