CASC-AI: Consensus-aware Self-corrective AI Agents for Noise Cell Segmentation
- URL: http://arxiv.org/abs/2502.07302v1
- Date: Tue, 11 Feb 2025 06:58:50 GMT
- Title: CASC-AI: Consensus-aware Self-corrective AI Agents for Noise Cell Segmentation
- Authors: Ruining Deng, Yihe Yang, David J. Pisapia, Benjamin Liechty, Junchao Zhu, Juming Xiong, Junlin Guo, Zhengyi Lu, Jiacheng Wang, Xing Yao, Runxuan Yu, Rendong Zhang, Gaurav Rudravaram, Mengmeng Yin, Pinaki Sarder, Haichun Yang, Yuankai Huo, Mert R. Sabuncu,
- Abstract summary: Multi-class cell segmentation in high-resolution gigapixel whole slide images is crucial for various clinical applications.
Recent efforts have democratized this process by involving lay annotators without medical expertise.
We propose a consensus-aware self-corrective AI agent that leverages the Consensus Matrix to guide its learning process.
- Score: 8.50335568530725
- License:
- Abstract: Multi-class cell segmentation in high-resolution gigapixel whole slide images (WSI) is crucial for various clinical applications. However, training such models typically requires labor-intensive, pixel-wise annotations by domain experts. Recent efforts have democratized this process by involving lay annotators without medical expertise. However, conventional non-agent-based approaches struggle to handle annotation noise adaptively, as they lack mechanisms to mitigate false positives (FP) and false negatives (FN) at both the image-feature and pixel levels. In this paper, we propose a consensus-aware self-corrective AI agent that leverages the Consensus Matrix to guide its learning process. The Consensus Matrix defines regions where both the AI and annotators agree on cell and non-cell annotations, which are prioritized with stronger supervision. Conversely, areas of disagreement are adaptively weighted based on their feature similarity to high-confidence agreement regions, with more similar regions receiving greater attention. Additionally, contrastive learning is employed to separate features of noisy regions from those of reliable agreement regions by maximizing their dissimilarity. This paradigm enables the AI to iteratively refine noisy labels, enhancing its robustness. Validated on one real-world lay-annotated cell dataset and two simulated noisy datasets, our method demonstrates improved segmentation performance, effectively correcting FP and FN errors and showcasing its potential for training robust models on noisy datasets. The official implementation and cell annotations are publicly available at https://github.com/ddrrnn123/CASC-AI.
Related papers
- DenseVLM: A Retrieval and Decoupled Alignment Framework for Open-Vocabulary Dense Prediction [80.67150791183126]
We propose DenseVLM, a framework designed to learn unbiased region-language alignment from powerful pre-trained VLM representations.
We show that DenseVLM can be seamlessly integrated into open-vocabulary object detection and image segmentation tasks, leading to notable performance improvements.
arXiv Detail & Related papers (2024-12-09T06:34:23Z) - A Noise and Edge extraction-based dual-branch method for Shallowfake and Deepfake Localization [15.647035299476894]
We develop a dual-branch model that integrates manually designed feature noise with conventional CNN features.
The model is superior in comparison and easily outperforms the existing state-of-the-art (SoTA) models.
arXiv Detail & Related papers (2024-09-02T02:18:34Z) - Progressive Feature Self-reinforcement for Weakly Supervised Semantic
Segmentation [55.69128107473125]
We propose a single-stage approach for Weakly Supervised Semantic (WSSS) with image-level labels.
We adaptively partition the image content into deterministic regions (e.g., confident foreground and background) and uncertain regions (e.g., object boundaries and misclassified categories) for separate processing.
Building upon this, we introduce a complementary self-enhancement method that constrains the semantic consistency between these confident regions and an augmented image with the same class labels.
arXiv Detail & Related papers (2023-12-14T13:21:52Z) - Semantic Connectivity-Driven Pseudo-labeling for Cross-domain
Segmentation [89.41179071022121]
Self-training is a prevailing approach in cross-domain semantic segmentation.
We propose a novel approach called Semantic Connectivity-driven pseudo-labeling.
This approach formulates pseudo-labels at the connectivity level and thus can facilitate learning structured and low-noise semantics.
arXiv Detail & Related papers (2023-12-11T12:29:51Z) - Unsupervised Domain Adaptation for Semantic Segmentation with Pseudo
Label Self-Refinement [9.69089112870202]
We propose an auxiliary pseudo-label refinement network (PRN) for online refining of the pseudo labels and also localizing the pixels whose predicted labels are likely to be noisy.
We evaluate our approach on benchmark datasets with three different domain shifts, and our approach consistently performs significantly better than the previous state-of-the-art methods.
arXiv Detail & Related papers (2023-10-25T20:31:07Z) - Extending CAM-based XAI methods for Remote Sensing Imagery Segmentation [7.735470452949379]
We introduce a new XAI evaluation methodology and metric based on "Entropy" to measure the model uncertainty.
We show that using Entropy to monitor the model uncertainty in segmenting the pixels within the target class is more suitable.
arXiv Detail & Related papers (2023-10-03T07:01:23Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Towards Fewer Annotations: Active Learning via Region Impurity and
Prediction Uncertainty for Domain Adaptive Semantic Segmentation [19.55572909866489]
We propose a region-based active learning approach for semantic segmentation under a domain shift.
Our algorithm, Active Learning via Region Impurity and Prediction Uncertainty (AL-RIPU), introduces a novel acquisition strategy characterizing the spatial adjacency of image regions.
Our method only requires very few annotations to almost reach the supervised performance and substantially outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-11-25T06:40:58Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Weakly supervised segmentation with cross-modality equivariant
constraints [7.757293476741071]
Weakly supervised learning has emerged as an appealing alternative to alleviate the need for large labeled datasets in semantic segmentation.
We present a novel learning strategy that leverages self-supervision in a multi-modal image scenario to significantly enhance original CAMs.
Our approach outperforms relevant recent literature under the same learning conditions.
arXiv Detail & Related papers (2021-04-06T13:14:20Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.