論文の概要: Quantification of model error for inverse problems in the Weak Neural Variational Inference framework
- arxiv url: http://arxiv.org/abs/2502.07415v1
- Date: Tue, 11 Feb 2025 09:52:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:10:05.265443
- Title: Quantification of model error for inverse problems in the Weak Neural Variational Inference framework
- Title(参考訳): 弱ニューラルネットワーク変分推論フレームワークにおける逆問題に対するモデル誤差の定量化
- Authors: Vincent C. Scholz, P. S. Koutsourelakis,
- Abstract要約: Weak Neural Variational Inference (WNVI) フレームワークを拡張し,確率的特性推定を行う。
本フレームワークはPDEに基づく逆問題におけるモデル誤差を明示的に定量化する。
提案手法により, 材料特性推定の精度と信頼性が向上することが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We present a novel extension of the Weak Neural Variational Inference (WNVI) framework for probabilistic material property estimation that explicitly quantifies model errors in PDE-based inverse problems. Traditional approaches assume the correctness of all governing equations, including potentially unreliable constitutive laws, which can lead to biased estimates and misinterpretations. Our proposed framework addresses this limitation by distinguishing between reliable governing equations, such as conservation laws, and uncertain constitutive relationships. By treating all state variables as latent random variables, we enforce these equations through separate sets of residuals, leveraging a virtual likelihood approach with weighted residuals. This formulation not only identifies regions where constitutive laws break down but also improves robustness against model uncertainties without relying on a fully trustworthy forward model. We demonstrate the effectiveness of our approach in the context of elastography, showing that it provides a structured, interpretable, and computationally efficient alternative to traditional model error correction techniques. Our findings suggest that the proposed framework enhances the accuracy and reliability of material property estimation by offering a principled way to incorporate uncertainty in constitutive modeling.
- Abstract(参考訳): 本稿では,PDEに基づく逆問題におけるモデル誤差を明示的に定量化する確率的材料特性推定のためのWNVIフレームワークを新たに拡張する。
伝統的なアプローチは、潜在的に信頼できない構成法則を含む全ての支配方程式の正しさを前提としており、偏りのある推定と誤解釈につながる可能性がある。
提案フレームワークは,保全法則や不確実な構成関係など,信頼性の高い統治方程式を区別することで,この制限に対処する。
すべての状態変数を潜在確率変数として扱うことにより、重み付けされた残差を持つ仮想的可能性アプローチを利用して、これらの方程式を別個の残差集合を通じて強制する。
この定式化は、構成法則が崩壊する地域を識別するだけでなく、完全に信頼できるフォワードモデルに頼ることなく、モデル不確実性に対する堅牢性を向上させる。
提案手法の有効性をエラストグラフィーの文脈で示し,従来のモデル誤り訂正手法に代わる構造的,解釈可能,計算的に効率的であることを示す。
提案手法は, 構成モデルに不確実性を組み込むことにより, 材料特性推定の精度と信頼性を高めることを示唆している。
関連論文リスト
- Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
本稿では,拡散モデルを用いてベイズ推定を行う方法を示す。
本稿では,新しいノイズスケジュールを用いて,標準的なDBMトレーニングを通じてそのようなマップを学習する方法を示す。
その結果は、低次元の潜在空間上で一意に定義される非常に表現性の高い生成モデルのクラスである。
論文 参考訳(メタデータ) (2024-07-11T19:58:19Z) - Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models [15.817239008727789]
本研究では,異なるドメインで生成された場合,サンプルがどのようなものであったのかを仮定した,ドメイン反事実と呼ばれる特定のタイプの因果クエリを解析する。
本研究では, 潜在構造因果モデル (SCM) の回復は, ドメイン・デファクト・デファクトを推定するために不要であることを示す。
また、モデル生成過程を単純化し、生成モデル推定を行うための理論的基盤となる実用的なアルゴリズムも開発する。
論文 参考訳(メタデータ) (2023-06-20T04:19:06Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - Robustness and Accuracy Could Be Reconcilable by (Proper) Definition [109.62614226793833]
強靭性と精度のトレードオフは、敵文学において広く研究されている。
局所的不変性の帰納的バイアスを課す不適切に定義された頑健な誤差に由来する可能性がある。
定義上、SCOREは、最悪のケースの不確実性に対処しながら、堅牢性と正確性の間の和解を促進する。
論文 参考訳(メタデータ) (2022-02-21T10:36:09Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Modal Uncertainty Estimation via Discrete Latent Representation [4.246061945756033]
本稿では,インプットとアウトプットの1対1マッピングを,忠実な不確実性対策とともに学習するディープラーニングフレームワークを提案する。
我々のフレームワークは、現在の最先端手法よりもはるかに正確な不確実性推定を実証している。
論文 参考訳(メタデータ) (2020-07-25T05:29:34Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z) - Towards a Theoretical Understanding of the Robustness of Variational
Autoencoders [82.68133908421792]
敵攻撃や他の入力摂動に対する変分オートエンコーダ(VAE)の堅牢性を理解するために,我々は進出している。
確率モデルにおけるロバスト性のための新しい基準である$r$-robustnessを開発する。
遠心法を用いて訓練したVAEが、ロバストネスの指標でよく評価されていることを示す。
論文 参考訳(メタデータ) (2020-07-14T21:22:29Z) - Achieving Equalized Odds by Resampling Sensitive Attributes [13.114114427206678]
等価性の概念をほぼ満足する予測モデルを学習するためのフレキシブルなフレームワークを提案する。
この微分可能な関数は、モデルパラメータを等化奇数に向けて駆動するペナルティとして使用される。
本研究は,予測規則が本性質に反するか否かを検出するための公式な仮説テストを開発する。
論文 参考訳(メタデータ) (2020-06-08T00:18:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。