Entity Linking using LLMs for Automated Product Carbon Footprint Estimation
- URL: http://arxiv.org/abs/2502.07418v1
- Date: Tue, 11 Feb 2025 09:54:39 GMT
- Title: Entity Linking using LLMs for Automated Product Carbon Footprint Estimation
- Authors: Steffen Castle, Julian Moreno Schneider, Leonhard Hennig, Georg Rehm,
- Abstract summary: Growing concerns about climate change and sustainability are driving manufacturers to take significant steps toward reducing their carbon footprints.
For these manufacturers, a first step towards this goal is to identify the environmental impact of the individual components of their products.
We propose a system leveraging large language models (LLMs) to automatically map components from manufacturer Bills of Materials (BOMs) to Life Cycle Assessment (LCA) database entries.
- Score: 4.423169535332588
- License:
- Abstract: Growing concerns about climate change and sustainability are driving manufacturers to take significant steps toward reducing their carbon footprints. For these manufacturers, a first step towards this goal is to identify the environmental impact of the individual components of their products. We propose a system leveraging large language models (LLMs) to automatically map components from manufacturer Bills of Materials (BOMs) to Life Cycle Assessment (LCA) database entries by using LLMs to expand on available component information. Our approach reduces the need for manual data processing, paving the way for more accessible sustainability practices.
Related papers
- The Dual-use Dilemma in LLMs: Do Empowering Ethical Capacities Make a Degraded Utility? [54.18519360412294]
Large Language Models (LLMs) must balance between rejecting harmful requests for safety and accommodating legitimate ones for utility.
This paper presents a Direct Preference Optimization (DPO) based alignment framework that achieves better overall performance.
Our resulting model, LibraChem, outperforms leading LLMs including Claude-3, GPT-4o, and LLaMA-3 by margins of 13.44%, 7.16%, and 7.10% respectively.
arXiv Detail & Related papers (2025-01-20T06:35:01Z) - Representation Learning of Complex Assemblies, An Effort to Improve Corporate Scope 3 Emissions Calculation [0.276240219662896]
Governments, corporations, and citizens alike must accurately assess the climate impact of manufacturing goods and providing services.
Process life cycle analysis (pLCA) are used to evaluate the climate impact of production, use, and disposal.
We propose a semi-supervised learning-based framework to identify substitute parts.
arXiv Detail & Related papers (2024-08-21T06:21:31Z) - Carbon Footprint Accounting Driven by Large Language Models and Retrieval-augmented Generation [3.428260237038657]
Traditional life cycle assessment methods rely heavily on human expertise, making near-real-time updates challenging.
This paper introduces a novel approach integrating large language models (LLMs) with retrieval-augmented generation technology to enhance the real-time, professional, and economical aspects of carbon footprint information retrieval and analysis.
arXiv Detail & Related papers (2024-08-19T06:05:24Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - AutoPCF: Efficient Product Carbon Footprint Accounting with Large
Language Models [5.875750227370339]
We propose an automatic AI-driven PCF accounting framework, called AutoPCF, which applies deep learning algorithms to automatically match calculation parameters, and ultimately calculate the PCF.
The results demonstrate its potential in achieving automatic modeling and estimation of PCF with a large reduction in modeling time from days to minutes.
arXiv Detail & Related papers (2023-08-08T13:12:03Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language
Model [72.65502770895417]
We quantify the carbon footprint of BLOOM, a 176-billion parameter language model, across its life cycle.
We estimate that BLOOM's final training emitted approximately 24.7 tonnes ofcarboneqif we consider only the dynamic power consumption.
We conclude with a discussion regarding the difficulty of precisely estimating the carbon footprint of machine learning models.
arXiv Detail & Related papers (2022-11-03T17:13:48Z) - GreenDB -- A Dataset and Benchmark for Extraction of Sustainability
Information of Consumer Goods [58.31888171187044]
We present GreenDB, a database that collects products from European online shops on a weekly basis.
As proxy for the products' sustainability, it relies on sustainability labels, which are evaluated by experts.
We present initial results demonstrating that ML models trained with our data can reliably predict the sustainability label of products.
arXiv Detail & Related papers (2022-07-21T19:59:42Z) - GreenDB: Toward a Product-by-Product Sustainability Database [2.9971739294416717]
Modern retail platforms rely heavily on Machine Learning (ML) for their search and recommender systems.
No open and publicly available database integrates sustainability information on a product-by-product basis.
We present our proof of concept implementation of a scraping system that creates the GreenDB dataset.
arXiv Detail & Related papers (2022-05-05T20:24:16Z) - Towards Green Automated Machine Learning: Status Quo and Future
Directions [71.86820260846369]
AutoML is being criticised for its high resource consumption.
This paper proposes Green AutoML, a paradigm to make the whole AutoML process more environmentally friendly.
arXiv Detail & Related papers (2021-11-10T18:57:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.