Scrambling Enabled Entropy Accumulation in Open Quantum Systems
- URL: http://arxiv.org/abs/2502.07468v1
- Date: Tue, 11 Feb 2025 11:24:09 GMT
- Title: Scrambling Enabled Entropy Accumulation in Open Quantum Systems
- Authors: Yuke Zhang, Zeyu Liu, Shuo Zhang, Langxuan Chen, Pengfei Zhang,
- Abstract summary: In closed quantum many-body systems, initially localized information spreads throughout the system and becomes highly complex.
Recent studies have shown that dissipation in open systems can hinder information scrambling, driving the system into a dissipative phase.
We unveil a novel phenomenon in open quantum systems, termed entropy accumulation, which occurs exclusively within the scrambling phase.
- Score: 12.410361153759757
- License:
- Abstract: In closed quantum many-body systems, initially localized information spreads throughout the system and becomes highly complex. This phenomenon, known as information scrambling, is closely related to entropy growth and quantum thermalization. Recent studies have shown that dissipation in open systems can hinder information scrambling, driving the system into a dissipative phase when the system-bath coupling is strong. However, the signature of this scrambling transition in entropy dynamics remains unexplored. In this work, we unveil a novel phenomenon in open quantum systems, termed entropy accumulation, which occurs exclusively within the scrambling phase. We consider a setup in which a probe is weakly coupled to a system that is already interacting with a bath. We calculate the increase in the second R\'enyi entropy induced by an external impulse on the system, after tracing out the probe. Despite the system-probe coupling being weak, the entropy continues to increase and eventually saturates at a finite value due to operator growth. In contrast, the entropy increase is limited by the coupling strength in the dissipative phase. The theoretical prediction is derived from both general arguments and an explicit example using generalized Boltzmann equations. Our results offer new insights into the intriguing relationship between entropy dynamics and information scrambling in open quantum systems.
Related papers
- Thermodynamics of the Page curve in Markovian open quantum systems [0.0]
We study the entropy dynamics for Lindbladian evolution in weak contact with Markovian reservoirs.
We give an analytic expression of the entanglement dynamics for a decaying excitation in a two-level system.
arXiv Detail & Related papers (2025-01-15T19:01:04Z) - Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - On the First Law of Thermodynamics in Time-Dependent Open Quantum
Systems [0.0]
How to rigorously define thermodynamic quantities such as heat, work, and internal energy in open quantum systems driven far from equilibrium remains a significant open question in quantum thermodynamics.
Heat is a quantity whose fundamental definition applies only to processes in systems infinitesimally perturbed from equilibrium.
Heat is accounted for carefully in strongly-driven systems.
arXiv Detail & Related papers (2022-08-13T02:26:31Z) - Emergent pair localization in a many-body quantum spin system [0.0]
Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis.
In the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize on experimentally accessible timescales.
We study an ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized by a Rydberg quantum simulator.
arXiv Detail & Related papers (2022-07-28T16:31:18Z) - Nonperturbative renormalization of quantum thermodynamics from weak to
strong couplings [2.542198147027801]
By solving the exact master equation of open quantum systems, we formulate the quantum thermodynamics from weak to strong couplings.
We find that the exact solution of the reduced density matrix of these systems approaches a Gibbs-type state in the steady-state limit for both the weak and strong system-reservoir coupling strengths.
arXiv Detail & Related papers (2022-05-17T06:25:03Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Signatures of bath-induced quantum avalanches in a many-body--localized
system [47.187609203210705]
Quantum avalanches occur when the system is locally coupled to a small thermal inclusion that acts as a bath.
We realize an interface between a many-body--localized system and a thermal inclusion of variable size, and study its dynamics.
arXiv Detail & Related papers (2020-12-30T18:34:34Z) - Non-destructively probing the thermodynamics of quantum systems with
qumodes [0.6144680854063939]
In quantum systems there is often a destruction of the system itself due to the means of measurement.
One approach to circumventing this is the use of ancillary probes that couple to the system under investigation.
We highlight means by which continuous variable quantum modes (qumodes) can be employed to probe the thermodynamics of quantum systems in and out of equilibrium.
arXiv Detail & Related papers (2017-07-13T17:57:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.