Quantum dynamics of a spin model with an extensive degeneracy
- URL: http://arxiv.org/abs/2502.07609v1
- Date: Tue, 11 Feb 2025 15:01:07 GMT
- Title: Quantum dynamics of a spin model with an extensive degeneracy
- Authors: Krishanu Ghosh, Diptiman Sen, K. Sengupta,
- Abstract summary: We study the role played by extensive degeneracy in shaping the nature of the quantum dynamics of a one-dimensional spin model for both ramp and periodic drive protocols.
- Score: 0.0
- License:
- Abstract: We study the role played by extensive degeneracy in shaping the nature of the quantum dynamics of a one-dimensional spin model for both ramp and periodic drive protocols. The model displays an extensive degenerate manifold of states for a specific value of one of the parameters of its Hamiltonian. We study a linear ramp which takes the spin model through this degenerate point and show that it leads to a deviation from the usual Kibble-Zurek behavior. We also study the St\"uckelberg oscillations in such a model for a ramp which passes twice through the degenerate point. Our study indicates that such oscillations are strongly suppressed leading to a distinct behavior compared to those arising from double passage through a quantum critical point. Finally, we study the periodic dynamics of the model and show, for a large drive amplitude, the existence of special drive frequencies at which the system exhibits an approximate emergent $U(1)$ symmetry. We study the effect of this emergent symmetry on the correlators of the driven system and demonstrate the existence of dynamic symmetry restoration at these frequencies. We study the fate of the emergent symmetry when the drive amplitude is decreased and discuss possible experiments to test our theory.
Related papers
- Family-Vicsek dynamical scaling and Kardar-Parisi-Zhang-like
superdiffusive growth of surface roughness in a driven one-dimensional
quasiperiodic model [0.0]
We investigate the out-of-equilibrium dynamics of spinless fermions in a one-dimensional quasiperiodic model with and without a periodic driving.
In absence of periodic driving, the model is interestingly shown to host a subdiffusive critical phase.
We construct an effective Floquet Hamiltonian, which qualitatively captures this feature occurring in the driven model.
arXiv Detail & Related papers (2023-07-07T19:30:05Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Entangling dynamics from effective rotor/spin-wave separation in
U(1)-symmetric quantum spin models [0.0]
Non-equilibrium dynamics of quantum spin models is a most challenging topic, due to the exponentiality of Hilbert space.
A particularly important class of evolutions is the one governed by U(1) symmetric Hamiltonians.
We show that the dynamics of the OAT model can be closely reproduced by systems with power-lawdecaying interactions.
arXiv Detail & Related papers (2023-02-18T09:37:45Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Emergent conservation in Floquet dynamics of integrable non-Hermitian
models [0.0]
We study the dynamics of a class of integrable non-Hermitian free-fermionic models driven periodically using a continuous drive protocol.
Our analysis indicates the existence of special drive frequencies at which an approximately conserved quantity emerges.
arXiv Detail & Related papers (2022-09-26T18:21:08Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Tunable-spin-model generation with spin-orbit-coupled fermions in
optical lattices [0.5249805590164902]
We study the dynamical behaviour of ultracold fermionic atoms loaded into an optical lattice under the presence of an effective magnetic flux.
At half filling, the system can emulate a variety of iconic spin-1/2 models such as an Ising model, an XY model, a generic XXZ model with arbitrary anisotropy, or a collective one-axis twisting model.
arXiv Detail & Related papers (2020-11-03T16:54:32Z) - The nonlinear semiclassical dynamics of the unbalanced, open Dicke model [0.0]
The Dicke model exhibits a quantum phase transition to a state in which the atoms collectively emit light into the cavity mode, known as superradiance.
We study this system in the semiclassical (mean field) limit, neglecting the role of quantum fluctuations.
We find that a flip of the collective spin can result in the sudden emergence of chaotic dynamics.
arXiv Detail & Related papers (2020-04-09T11:13:20Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.