論文の概要: Large Language Models as Proxies for Theories of Human Linguistic Cognition
- arxiv url: http://arxiv.org/abs/2502.07687v1
- Date: Tue, 11 Feb 2025 16:38:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:08:06.952300
- Title: Large Language Models as Proxies for Theories of Human Linguistic Cognition
- Title(参考訳): 言語認知理論のプロキシとしての大規模言語モデル
- Authors: Imry Ziv, Nur Lan, Emmanuel Chemla, Roni Katzir,
- Abstract要約: 人間の言語認知研究における現在の大言語モデル(LLM)の役割について考察する。
我々は,その表現や学習において比較的言語的に中立な認知理論に対するプロキシのようなモデルの利用に焦点をあてる。
- 参考スコア(独自算出の注目度): 2.624902795082451
- License:
- Abstract: We consider the possible role of current large language models (LLMs) in the study of human linguistic cognition. We focus on the use of such models as proxies for theories of cognition that are relatively linguistically-neutral in their representations and learning but differ from current LLMs in key ways. We illustrate this potential use of LLMs as proxies for theories of cognition in the context of two kinds of questions: (a) whether the target theory accounts for the acquisition of a given pattern from a given corpus; and (b) whether the target theory makes a given typologically-attested pattern easier to acquire than another, typologically-unattested pattern. For each of the two questions we show, building on recent literature, how current LLMs can potentially be of help, but we note that at present this help is quite limited.
- Abstract(参考訳): 人間の言語認知研究における現在の大言語モデル(LLM)の役割について考察する。
我々は,認知論におけるプロキシのようなモデルの利用に焦点をあてる。その表現や学習において比較的言語的に中立であるが,鍵となる方法では現在のLLMと異なる。
2種類の質問の文脈において、認知理論のプロキシとしてLLMを使うことの可能性について説明する。
(a) 対象理論が所定の法人から所定のパターンの取得に寄与するか否か、及び
(b) 対象理論が入力された図柄を、入力された図柄よりも容易に取得できるか否か。
最近の文献に基づく2つの質問のそれぞれについて、現在のLLMがいかに役立つ可能性があるかを説明していますが、現時点では、この助けは非常に限られています。
関連論文リスト
- Large Language Models as Neurolinguistic Subjects: Identifying Internal Representations for Form and Meaning [49.60849499134362]
本研究では,大言語モデル(LLM)の記号化(形式)および記号化(意味)に関する言語的理解について検討する。
伝統的な精神言語学的評価は、しばしばLSMの真の言語能力を誤って表現する統計バイアスを反映している。
ミニマルペアと診断プローブを組み合わせてモデル層間のアクティベーションパターンを解析する新しい手法を用いて,ニューロ言語学的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-12T04:16:44Z) - Does Reasoning Emerge? Examining the Probabilities of Causation in Large Language Models [6.922021128239465]
AIの最近の進歩は、大規模言語モデル(LLM)の能力によって推進されている。
本稿では,LLMが実世界の推論機構をいかに効果的に再現できるかを評価することを目的とした,理論的かつ実用的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-15T15:19:11Z) - Black Big Boxes: Do Language Models Hide a Theory of Adjective Order? [5.395055685742631]
英語や他の言語では、複雑な名詞句の複数の形容詞は、多くの言語理論の標的となった複雑な順序付けパターンを示している。
本稿では,人体における形容詞順選好(AOP)を説明するために設計された既存の仮説を概観し,言語モデルにおけるAOPを学習するための設定を開発する。
理論言語学で特定された因子によって生成される予測よりも,全てのモデルの予測が人間のAOPにずっと近いことが判明した。
論文 参考訳(メタデータ) (2024-07-02T10:29:09Z) - What Do Language Models Learn in Context? The Structured Task Hypothesis [89.65045443150889]
大規模言語モデル(LLM)は、インコンテキスト学習(ICL)と呼ばれるデモで提示されたインコンテキストの例から新しいタスクを学習する
一般的な仮説の一つは、タスク選択によるICLの説明である。
もう一つの一般的な仮説は、ICLはメタ学習の一形態である、すなわち、モデルが事前学習時に学習アルゴリズムを学習し、それを実演に適用する、というものである。
論文 参考訳(メタデータ) (2024-06-06T16:15:34Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Why Can Large Language Models Generate Correct Chain-of-Thoughts? [10.888196404348093]
自然言語生成に適した2階層階層型グラフィカルモデルを提案する。
我々は、LLM生成した思考の連鎖の可能性を測る魅力的な幾何学的収束率を確立する。
論文 参考訳(メタデータ) (2023-10-20T15:09:46Z) - The Quo Vadis of the Relationship between Language and Large Language
Models [3.10770247120758]
LLM(Large Language Models)は、LLMを言語科学モデルとして採用することを奨励している。
透明性に欠ける科学的モデルの導入によって引き起こされる最も重要な理論的および経験的リスクを特定します。
現在の開発段階において、LLMは言語に関する説明をほとんど提供していないと結論付けている。
論文 参考訳(メタデータ) (2023-10-17T10:54:24Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z) - Explaining Large Language Model-Based Neural Semantic Parsers (Student
Abstract) [0.0]
大規模言語モデル (LLM) は意味解析などの構造化予測タスクにおいて強力な機能を示した。
我々の研究は、LLMに基づく意味的行動を説明するための様々な方法について研究している。
今後の研究をより深く理解していきたいと考えています。
論文 参考訳(メタデータ) (2023-01-25T16:12:43Z) - Shortcut Learning of Large Language Models in Natural Language
Understanding [119.45683008451698]
大規模言語モデル(LLM)は、一連の自然言語理解タスクにおいて最先端のパフォーマンスを達成した。
予測のショートカットとしてデータセットのバイアスやアーティファクトに依存するかも知れません。
これは、その一般化性と敵対的堅牢性に大きな影響を与えている。
論文 参考訳(メタデータ) (2022-08-25T03:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。