Quantum learning advantage on a scalable photonic platform
- URL: http://arxiv.org/abs/2502.07770v2
- Date: Sun, 16 Feb 2025 13:19:55 GMT
- Title: Quantum learning advantage on a scalable photonic platform
- Authors: Zheng-Hao Liu, Romain Brunel, Emil E. B. Østergaard, Oscar Cordero, Senrui Chen, Yat Wong, Jens A. H. Nielsen, Axel B. Bregnsbo, Sisi Zhou, Hsin-Yuan Huang, Changhun Oh, Liang Jiang, John Preskill, Jonas S. Neergaard-Nielsen, Ulrik L. Andersen,
- Abstract summary: quantum advantage in learning physical systems remains a largely untapped frontier.
We present a photonic implementation of a quantum-enhanced protocol for learning the probability distribution of a bosonic displacement process.
Our results demonstrate that even with non-ideal, noisy entanglement, a significant quantum advantage can be realized in continuous-variable quantum systems.
- Score: 5.788945534225034
- License:
- Abstract: Recent advancements in quantum technologies have opened new horizons for exploring the physical world in ways once deemed impossible. Central to these breakthroughs is the concept of quantum advantage, where quantum systems outperform their classical counterparts in solving specific tasks. While much attention has been devoted to computational speedups, quantum advantage in learning physical systems remains a largely untapped frontier. Here, we present a photonic implementation of a quantum-enhanced protocol for learning the probability distribution of a multimode bosonic displacement process. By harnessing the unique properties of continuous-variable quantum entanglement, we obtain a massive advantage in sample complexity with respect to conventional methods without entangled resources. With approximately 5 dB of two-mode squeezing -- corresponding to imperfect Einstein--Podolsky--Rosen (EPR) entanglement -- we learn a 100-mode bosonic displacement process using 11.8 orders of magnitude fewer samples than a conventional scheme. Our results demonstrate that even with non-ideal, noisy entanglement, a significant quantum advantage can be realized in continuous-variable quantum systems. This marks an important step towards practical quantum-enhanced learning protocols with implications for quantum metrology, certification, and machine learning.
Related papers
- Entanglement-induced provable and robust quantum learning advantages [0.0]
We rigorously establish a noise-robust, unconditional quantum learning advantage in terms of expressivity, inference speed, and training efficiency.
Our proof is information-theoretic and pinpoints the origin of this advantage.
arXiv Detail & Related papers (2024-10-04T02:39:07Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum Neuronal Sensing of Quantum Many-Body States on a 61-Qubit
Programmable Superconducting Processor [17.470012490921192]
Classifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics.
Here, we propose a new approach called quantum neuronal sensing.
We show that our scheme can efficiently classify two different types of many-body phenomena.
arXiv Detail & Related papers (2022-01-16T03:20:04Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - How to enhance quantum generative adversarial learning of noisy
information [5.8010446129208155]
We show how different training problems may occur during the optimization process.
We propose new strategies to achieve a faster convergence in any operating regime.
Our results pave the way for new experimental demonstrations of such hybrid classical-quantum protocols.
arXiv Detail & Related papers (2020-12-10T21:48:26Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Quantum entanglement recognition [0.0]
We formulate a framework for probing entanglement based on machine learning techniques.
We show that the resulting quantum entanglement recognition task is accurate and can be assigned a well-controlled error.
arXiv Detail & Related papers (2020-07-28T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.