Entanglement-induced provable and robust quantum learning advantages
- URL: http://arxiv.org/abs/2410.03094v1
- Date: Fri, 4 Oct 2024 02:39:07 GMT
- Title: Entanglement-induced provable and robust quantum learning advantages
- Authors: Haimeng Zhao, Dong-Ling Deng,
- Abstract summary: We rigorously establish a noise-robust, unconditional quantum learning advantage in terms of expressivity, inference speed, and training efficiency.
Our proof is information-theoretic and pinpoints the origin of this advantage.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing holds the unparalleled potentials to enhance, speed up or innovate machine learning. However, an unambiguous demonstration of quantum learning advantage has not been achieved so far. Here, we rigorously establish a noise-robust, unconditional quantum learning advantage in terms of expressivity, inference speed, and training efficiency, compared to commonly-used classical machine learning models. Our proof is information-theoretic and pinpoints the origin of this advantage: quantum entanglement can be used to reduce the communication required by non-local machine learning tasks. In particular, we design a fully classical task that can be solved with unit accuracy by a quantum model with a constant number of variational parameters using entanglement resources, whereas commonly-used classical models must scale at least linearly with the size of the task to achieve a larger-than-exponentially-small accuracy. We further show that the quantum model can be trained with constant time and a number of samples inversely proportional to the problem size. We prove that this advantage is robust against constant depolarization noise. We show through numerical simulations that even though the classical models can have improved performance as their sizes are increased, they would suffer from overfitting. The constant-versus-linear separation, bolstered by the overfitting problem, makes it possible to demonstrate the quantum advantage with relatively small system sizes. We demonstrate, through both numerical simulations and trapped-ion experiments on IonQ Aria, the desired quantum-classical learning separation. Our results provide a valuable guide for demonstrating quantum learning advantages in practical applications with current noisy intermediate-scale quantum devices.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Shadows of quantum machine learning [2.236957801565796]
We introduce a new class of quantum models where quantum resources are only required during training, while the deployment of the trained model is classical.
We prove that this class of models is universal for classically-deployed quantum machine learning.
arXiv Detail & Related papers (2023-05-31T18:00:02Z) - Quantumness and Learning Performance in Reservoir Computing with a Single Oscillator [0.0]
We show that the quantum nonlinear model is more effective in terms of learning performance compared to a classical non-linear oscillator.
We examine the relationship between quantumness and performance by examining a broad range of initial states.
arXiv Detail & Related papers (2023-04-07T03:37:55Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Classical surrogates for quantum learning models [0.7734726150561088]
We introduce the concept of a classical surrogate, a classical model which can be efficiently obtained from a trained quantum learning model.
We show that large classes of well-analyzed re-uploading models have a classical surrogate.
arXiv Detail & Related papers (2022-06-23T14:37:02Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Enhancing Generative Models via Quantum Correlations [1.6099403809839032]
Generative modeling using samples drawn from the probability distribution constitutes a powerful approach for unsupervised machine learning.
We show theoretically that such quantum correlations provide a powerful resource for generative modeling.
We numerically test this separation on standard machine learning data sets and show that it holds for practical problems.
arXiv Detail & Related papers (2021-01-20T22:57:22Z) - Power of data in quantum machine learning [2.1012068875084964]
We show that some problems that are classically hard to compute can be easily predicted by classical machines learning from data.
We propose a projected quantum model that provides a simple and rigorous quantum speed-up for a learning problem in the fault-tolerant regime.
arXiv Detail & Related papers (2020-11-03T19:00:01Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
We show that the process of finding requirements on both a graph type and a quantum system coherence can be automated.
The automation is done by using a convolutional neural network of a particular type that learns to understand with which network and under which coherence requirements quantum advantage is possible.
Our results are of importance for demonstration of advantage in quantum experiments and pave the way towards automating scientific research and discoveries.
arXiv Detail & Related papers (2020-01-15T18:36:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.